sky brightness
Recently Published Documents


TOTAL DOCUMENTS

336
(FIVE YEARS 83)

H-INDEX

34
(FIVE YEARS 6)

2021 ◽  
Vol 3 (2) ◽  
pp. 35
Author(s):  
Abu Yazid Raisal ◽  
Muhammad Hidayat ◽  
Leo Hermawan ◽  
Arwin Juli Rakhmadi

Measuring the brightness of the night sky and determining the start of Fajr prayer times can be done using SQM. Observations were made at OIF UMSU with coordinates 3o 34' 55.06" N and 98o 43' 17.09" E. The sky brightness was measured using three SQMs mounted facing the zenith, eastern horizon, and western horizon. The night sky brightness values for SQM directed to the zenith, eastern horizon, and western horizon are 18.23 mpsas, 15.82 mpsas, and 15.47 mpsas. The beginning of fajr prayer time produced by SQM is after the beginning of fajr prayer time obtained using the Accurate Times concerning the Sun's altitude 18o below the horizon. The difference obtained by SQM directed to the zenith, eastern horizon, and western horizon is 29.5 minutes, 36.7 minutes, and 39.5 minutes. In other words, the beginning of Fajr prayer time used in Indonesia is earlier than it should be.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Albert D. Grauer ◽  
Patricia A. Grauer

AbstractThis paper presents time-series observations and analysis of broadband night sky airglow intensity 4 September 2018 through 30 April 2020. Data were obtained at 5 sites spanning more than 8500 km during the historically deep minimum of Solar Cycle 24 into the beginning of Solar Cycle 25. New time-series observations indicate previously unrecognized significant sources of broadband night sky brightness variations, not involving corresponding changes in the Sun's 10.7 cm solar flux, occur during deep solar minimum. New data show; (1) Even during a deep solar minimum the natural night sky is rarely, if ever, constant in brightness. Changes with time-scales of minutes, hours, days, and months are observed. (2) Semi-annual night sky brightness variations are coincident with changes in the orientation of Earth's magnetic field relative to the interplanetary magnetic field. (3) Solar wind plasma streams from solar coronal holes arriving at Earth’s bow shock nose are coincident with major night sky brightness increase events. (4) Sites more than 8500 km along the Earth's surface experience nights in common with either very bright or very faint night sky airglow emissions. The reason for this observational fact remains an open question. (5) It is plausible, terrestrial night airglow and geomagnetic indices have similar responses to the solar energy input into Earth's magnetosphere. Our empirical results contribute to a quantitative basis for understanding and predicting broadband night sky brightness variations. They are applicable in astronomical, planetary science, space weather, light pollution, biological, and recreational studies.


2021 ◽  
Vol 13 (22) ◽  
pp. 4623
Author(s):  
Charles Marseille ◽  
Martin Aubé ◽  
Africa Barreto ◽  
Alexandre Simoneau

Aerosol optical depth is an important indicator of aerosol particle properties and their associated radiative impacts. AOD determination is very important to achieve relevant climate modelling. Most remote sensing techniques to retrieve aerosol optical depth are applicable to daytime given the high level of light available. The night represents half of the time but in such conditions only a few remote sensing methods are available. Among these approaches, the most reliable are moon photometers and star photometers. In this paper, we attempt to fill gaps in the aerosol detection performed with the aforementioned techniques using night sky brightness measurements during moonless nights with the novel CoSQM, a portable, low-cost and open-source multispectral photometer. In this paper, we present an innovative method for estimating the aerosol optical depth using an empirical relationship between the zenith night sky brightness measured at night with the CoSQM and the aerosol optical depth retrieved during daytime from the AErosol Robotic NETwork. Although the proposed method does not measure the AOD directly, an empirical relationship with the CE318-T is shown to give good results at the location of Santa Cruz de Tenerife. Such a method is especially suited to light-polluted regions with light pollution sources located within a few kilometres of the observation site. A coherent day-to-night aerosol optical depth and Ångström Exponent evolution in a set of 354 days and nights from August 2019 to February 2021 was verified at the location of Santa Cruz de Tenerife on the island of Tenerife, Spain. The preliminary uncertainty of this technique was evaluated using the variance under stable day-to-night conditions, set at 0.02 for aerosol optical depth and 0.75 for the Ångström Exponent. These results indicate the set of CoSQM and the proposed methodology appear to be a promising tool, adding new information on the optical properties of aerosols at night, which could be of key importance in improving climate predictions.


2021 ◽  
Vol 95 (11) ◽  
Author(s):  
Peter Forkman ◽  
Jonas Flygare ◽  
Gunnar Elgered

AbstractThe accuracy of geodetic Very Long Baseline Interferometry (VLBI) is affected by water vapour in the atmosphere in terms of variations in the signal propagation delay at the different stations. This “wet” delay may be estimated directly from the VLBI data, as well as from independent instruments, such as collocated microwave radiometers. Rather than having stand-alone microwave radiometers we have, through simulations, evaluated the possibility to use radiometric data from the VLBI receiver in the VGOS telescopes at the Onsala Space Observatory. The advantage is that the emission from water vapour, as sensed by the radiometer, originates from the same atmospheric volume that delays the VLBI signal from the extra-galactic object. We use simulations of the sky brightness temperature and the wet delay together with an assumption of a root-mean-square (rms) noise of the receiver of 1 K, and observations evenly spread between elevation angles of 10$$^\circ $$ ∘ –90$$^\circ $$ ∘ . This results in an rms error of the estimated equivalent zenith wet delay of the order of 3 mm for a one frequency algorithm, used under cloud free conditions, and 4 mm for a two frequency algorithm, used during conditions with liquid water clouds. The results exclude rainy conditions when the method does not work. These errors are reduced by a factor of 3 if the receiver error is 0.1 K meaning that the receivers’ measurements of the sky brightness temperature is the main error source. We study the impact of ground-noise pickup by using a model of an existing wideband feed. Taking the algorithm uncertainty and the ground noise pickup into account we conclude that the method presented will be useful as an independent estimate of the wet delay to assess the quality of the wet delays and linear horizontal gradients estimated from the VLBI data themselves.


2021 ◽  
Vol 13 (18) ◽  
pp. 3653
Author(s):  
Zoltán Kolláth ◽  
Dénes Száz ◽  
Kornél Kolláth

In recent decades, considerable research has been carried out both in measuring and modelling the brightness of the sky. Modelling is highly complex, as the properties of light emission (spatial and spectral distribution) are generally unknown, and the physical state of the atmosphere cannot be determined independently. The existing radiation transfer models lack the focus on light pollution and model only a narrow spectral range or do not consider realistic atmospheric circumstances. In this paper, we introduce a new Monte Carlo simulation for modelling light pollution, including the optical density of the atmosphere and multiple photon scattering, then we attempt to combine the available information of satellite and ground-based measurements to check the extent to which it is possible to verify our model. It is demonstrated that we need all the separate pieces of information to interpret the observations adequately.


Author(s):  
M. S. Niaei ◽  
C. Yeşilyaprak ◽  
E. Atalay ◽  
E. Doğan
Keyword(s):  

Here we share the long term visualization and statistics of Easter Anatolian Observatory (DAG) Site's sky brightness conditions using an R-SQM system. Python V3 and some other Python modules were used to obtain and store the data in an SQL server and visualization done by a web server using HTML, PHP, and Javascript.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5590
Author(s):  
Miguel R. Alarcon ◽  
Marta Puig-Subirà ◽  
Miquel Serra-Ricart ◽  
Samuel Lemes-Perera ◽  
Manuel Mallorquín ◽  
...  

The main features of SG-WAS (SkyGlow Wireless Autonomous Sensor), a low-cost device for measuring Night Sky Brightness (NSB), are presented. SG-WAS is based on the TSL237 sensor –like the Unihedron Sky Quality Meter (SQM) or the STARS4ALL Telescope Encoder and Sky Sensor (TESS)–, with wireless communication (LoRa, WiFi, or LTE-M) and solar-powered rechargeable batteries. Field tests have been performed on its autonomy, proving that it can go up to 20 days without direct solar irradiance and remain hibernating after that for at least 4 months, returning to operation once re-illuminated. A new approach to the acquisition of average NSB measurements and their instrumental uncertainty (of the order of thousandths of a magnitude) is presented. In addition, the results of a new Sky Integrating Sphere (SIS) method have shown the possibility of performing mass device calibration with uncertainties below 0.02 mag/arcsec2. SG-WAS is the first fully autonomous and wireless low-cost NSB sensor to be used as an independent or networked device in remote locations without any additional infrastructure.


Author(s):  
Charles Marseille ◽  
Martin Aubé ◽  
Africa Barreto Velasco ◽  
Alexandre Simoneau

The aerosol optical depth is an important indicator of aerosol particle properties and associated radiative impacts. AOD determination is therefore very important to achieve relevant climate modeling. Most remote sensing techniques to retrieve aerosol optical depth are applicable to daytime given the high level of light available. The night represents half of the time but in such conditions only a few remote sensing techniques are available. Among these techniques, the most reliable are moon photometers and star photometers. In this paper, we attempt to fill gaps in the aerosol detection performed with the aforementioned techniques using night sky brightness measurements during moonless nights with the novel CoSQM: a portable, low cost and open-source multispectral photometer. In this paper, we present an innovative method for estimating the aerosol optical depth by using an empirical relationship between the zenith night sky brightness measured at night with the CoSQM and the aerosol optical depth retrieved at daytime from the AErosol Robotic NETwork. Such a method is especially suited to light-polluted regions with light pollution sources located within a few kilometers of the observation site. A coherent day-to-night aerosol optical depth and Ångström Exponent evolution in a set of 354 days and nights from August 2019 to February 2021 was verified at the location of Santa Cruz de Tenerife on the island of Tenerife, Spain. The preliminary uncertainty of this technique was evaluated using the variance under stable day-to-night conditions, set at 0.02 for aerosol optical depth and 0.75 for Ångström Exponent. These results indicate the set of CoSQM and the proposed methodology appear to be a promising tool to add new information on the aerosol optical properties at night, which could be of key importance to improve climate predictions.


Sign in / Sign up

Export Citation Format

Share Document