aerosol optical depth
Recently Published Documents


TOTAL DOCUMENTS

1901
(FIVE YEARS 353)

H-INDEX

80
(FIVE YEARS 6)

2022 ◽  
Vol 14 (2) ◽  
pp. 406
Author(s):  
Yong Xie ◽  
Yi Su ◽  
Xingfa Gu ◽  
Tiexi Chen ◽  
Wen Shao ◽  
...  

Accurate and updated aerosol optical properties (AOPs) are of vital importance to climatology and environment-related studies for assessing the radiative impact of natural and anthropogenic aerosols. We comprehensively studied the columnar AOP observations between January 2019 and July 2020 from a ground-based remote sensing instrument located at a rural site operated by Central China Comprehensive Experimental Sites in the center of the Yangtze River Delta (YRD) region. In order to further study the aerosol type, two threshold-based aerosol classification methods were used to investigate the potential categories of aerosol particles under different aerosol loadings. Based on AOP observation and classification results, the potential relationships between the above-mentioned results and meteorological factors (i.e., humidity) and long-range transportation processes were analyzed. According to the results, obvious variation in aerosol optical depth (AOD) during the daytime, as well as throughout the year, was revealed. Investigation into AOD, single-scattering albedo (SSA), and absorption aerosol optical depth (AAOD) revealed the dominance of fine-mode aerosols with low absorptivity. According to the results of the two aerosol classification methods, the dominant aerosol types were continental (accounting for 43.9%, method A) and non-absorbing aerosols (62.5%, method B). Longer term columnar AOP observations using remote sensing alongside other techniques in the rural areas in East China are still needed for accurate parameterization in the future.


2022 ◽  
Vol 14 (2) ◽  
pp. 373
Author(s):  
Muhammad Bilal ◽  
Alaa Mhawish ◽  
Md. Arfan Ali ◽  
Janet E. Nichol ◽  
Gerrit de Leeuw ◽  
...  

The SEMARA approach, an integration of the Simplified and Robust Surface Reflectance Estimation (SREM) and Simplified Aerosol Retrieval Algorithm (SARA) methods, was used to retrieve aerosol optical depth (AOD) at 550 nm from a Landsat 8 Operational Land Imager (OLI) at 30 m spatial resolution, a Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) at 500 m resolution, and a Visible Infrared Imaging Radiometer Suite (VIIRS) at 750 m resolution over bright urban surfaces in Beijing. The SEMARA approach coupled (1) the SREM method that is used to estimate the surface reflectance, which does not require information about water vapor, ozone, and aerosol, and (2) the SARA algorithm, which uses the surface reflectance estimated by SREM and AOD measurements obtained from the Aerosol Robotic NETwork (AERONET) site (or other high-quality AOD) as the input to estimate AOD without prior information on the aerosol optical and microphysical properties usually obtained from a look-up table constructed from long-term AERONET data. In the present study, AOD measurements were obtained from the Beijing AERONET site. The SEMARA AOD retrievals were validated against AOD measurements obtained from two other AERONET sites located at urban locations in Beijing, i.e., Beijing_RADI and Beijing_CAMS, over bright surfaces. The accuracy and uncertainties/errors in the AOD retrievals were assessed using Pearson’s correlation coefficient (r), root mean squared error (RMSE), relative mean bias (RMB), and expected error (EE = ± 0.05 ± 20%). EE is the envelope encompassing both absolute and relative errors and contains 68% (±1σ) of the good quality retrievals based on global validation. Here, the EE of the MODIS Dark Target algorithm at 3 km resolution is used to report the good quality SEMARA AOD retrievals. The validation results show that AOD from SEMARA correlates well with AERONET AOD measurements with high correlation coefficients (r) of 0.988, 0.980, and 0.981; small RMSE of 0.08, 0.09, and 0.08; and small RMB of 4.33%, 1.28%, and -0.54%. High percentages of retrievals, i.e., 85.71%, 91.53%, and 90.16%, were within the EE for Landsat 8 OLI, MODIS, and VIIRS, respectively. The results suggest that the SEMARA approach is capable of retrieving AOD over urban areas with high accuracy and small errors using high to medium spatial resolution satellite remote sensing data. This approach can be used for aerosol monitoring over bright urban surfaces such as in Beijing, which is frequently affected by severe dust storms and haze pollution, to evaluate their effects on public health.


2022 ◽  
Author(s):  
Michael Sigl ◽  
Matthew Toohey ◽  
Joseph R. McConnell ◽  
Jihong Cole-Dai ◽  
Mirko Severi

Abstract. The injection of sulfur into the stratosphere by volcanic eruptions is the dominant driver of natural climate variability on interannual-to-multidecadal timescales. Based on a set of continuous sulfate and sulfur records from a suite of ice cores from Greenland and Antarctica, the HolVol v.1.0 database includes estimates of the magnitudes and approximate source latitudes of major volcanic stratospheric sulfur injection (VSSI) events for the Holocene (from 9500 BCE or 11500 year BP to 1900 CE), constituting an extension of the previous record by 7000 years. The database incorporates new-generation ice-core aerosol records with sub-annual temporal resolution and demonstrated sub-decadal dating accuracy and precision. By tightly aligning and stacking the ice-core records on the WD2014 chronology from Antarctica we resolve long-standing previous inconsistencies in the dating of ancient volcanic eruptions that arise from biased (i.e. dated too old) ice-core chronologies over the Holocene for Greenland. We reconstruct a total of 850 volcanic eruptions with injections in excess of 1 TgS, of which 329 (39 %) are located in the low latitudes with bipolar sulfate deposition, 426 (50 %) are located in the Northern Hemisphere (NH) extratropics and 88 (10 %) are located in the Southern Hemisphere (SH) extratropics. The spatial distribution of reconstructed eruption locations is in agreement with prior reconstructions for the past 2,500 years, and follows the global distribution of landmasses. In total, these eruptions injected 7410 TgS in the stratosphere, for which tropical eruptions accounted for 70 % and NH extratropics for 25 %. A long-term latitudinally and monthly resolved stratospheric aerosol optical depth (SAOD) time series is reconstructed from the HolVol VSSI estimates, representing the first Holocene-scale reconstruction constrained by Greenland and Antarctica ice cores. These new long-term reconstructions of past VSSI and SAOD variability confirm evidence from regional volcanic eruption chronologies (e.g., from Iceland) in showing that the early Holocene (9500–7000 BCE) experienced a higher number of volcanic eruptions (+16 %) and cumulative VSSI (+86 %) compared to the past 2,500 years. This increase coincides with the rapid retreat of ice sheets during deglaciation, providing context for potential future increases of volcanic activity in regions under projected glacier melting in the 21st century. The reconstructed VSSI and SAOD data are available at https://doi.pangaea.de/10.1594/PANGAEA.928646 (Sigl et al., 2021).


Author(s):  
John T. Braggio ◽  
Eric S. Hall ◽  
Stephanie A. Weber ◽  
Amy K Huff

Optimal use of aerosol optical depth (AOD)-PM2.5 fused surfaces in epidemiologic studies requires homogeneous temporal and spatial fused surfaces. No analytic method is currently available to evaluate the spatial dimension. The temporal case-crossover design was modified to assess the association between Community Multiscale Air Quality (CMAQ) lag grids and four respiratory-cardiovascular hospital events. The maximum number of adjacent lag grids with the expo-sure-health outcome association determined the size of the homogeneous spatial area. The largest homogeneous spatial area included 5 grids (720 km2) and the smallest 2 grids (288 km2). PMC and PMCK analyses of ED asthma, IP asthma, IP MI, and IP HF were significantly higher in rural grids without air monitors than in urban with air monitors at lag grids 0, 1, and 01. Grids without air monitors had higher AOD-PM2.5 concentration levels, poverty percent, population density, and environmental hazards than grids with air monitors. ED asthma, IP MI, and HF PMCK ORs were significantly higher during the warm season than during the cold season at lag grids 0, 1, 01, and 04. The possibility of elevated fine PM and other demographic and environmental risk factors contributing to elevated respiratory-cardiovascular diseases in persons residing in rural areas was discussed.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 101
Author(s):  
Renee Zbizika ◽  
Paulina Pakszys ◽  
Tymon Zielinski

Aerosol Optical Depth (AOD) is a measure of the extinction of solar radiation by aerosols in the atmosphere. Understanding the variations of global AOD is necessary for precisely determining the role of aerosols. Arctic warming is partially caused by aerosols transported from vast distances, including those released during biomass burning events (BBEs). However, measuring AODs is challenging, typically requiring active LIDAR systems or passive sun photometers. Both are limited to cloud-free conditions; sun photometers provide only point measurements, thus requiring more spatial coverage. A more viable method to obtain accurate AOD may be found through machine learning. This study uses DNNs to estimate Svalbard’s AODs using a minimal set of meteorological parameters (temperature, air mass, water vapor, wind speed, latitude, longitude, and time of year). The mean absolute error (MAE) between predicted and true data was 0.00401 for the entire set and 0.0079 for the validation set. It was then shown that the inclusion of BBE data improves predictions by 42.167%. It was demonstrated that AODs may be accurately estimated without the use of expensive instrumentation, using machine learning and minimal data. Similar models may be developed for other regions, allowing immediate improvement of current meteorological models.


Sign in / Sign up

Export Citation Format

Share Document