scholarly journals Limiting magnitudes and night sky brightness at the Langkawi National Observatory based on observations of standard stars

2017 ◽  
Vol 852 ◽  
pp. 012002 ◽  
Author(s):  
C-C Ngeow ◽  
S-C Luo
Author(s):  
Charles Marseille ◽  
Martin Aubé ◽  
Africa Barreto Velasco ◽  
Alexandre Simoneau

The aerosol optical depth is an important indicator of aerosol particle properties and associated radiative impacts. AOD determination is therefore very important to achieve relevant climate modeling. Most remote sensing techniques to retrieve aerosol optical depth are applicable to daytime given the high level of light available. The night represents half of the time but in such conditions only a few remote sensing techniques are available. Among these techniques, the most reliable are moon photometers and star photometers. In this paper, we attempt to fill gaps in the aerosol detection performed with the aforementioned techniques using night sky brightness measurements during moonless nights with the novel CoSQM: a portable, low cost and open-source multispectral photometer. In this paper, we present an innovative method for estimating the aerosol optical depth by using an empirical relationship between the zenith night sky brightness measured at night with the CoSQM and the aerosol optical depth retrieved at daytime from the AErosol Robotic NETwork. Such a method is especially suited to light-polluted regions with light pollution sources located within a few kilometers of the observation site. A coherent day-to-night aerosol optical depth and Ångström Exponent evolution in a set of 354 days and nights from August 2019 to February 2021 was verified at the location of Santa Cruz de Tenerife on the island of Tenerife, Spain. The preliminary uncertainty of this technique was evaluated using the variance under stable day-to-night conditions, set at 0.02 for aerosol optical depth and 0.75 for Ångström Exponent. These results indicate the set of CoSQM and the proposed methodology appear to be a promising tool to add new information on the aerosol optical properties at night, which could be of key importance to improve climate predictions.


2013 ◽  
Vol 13 (4) ◽  
pp. 490-500 ◽  
Author(s):  
Hui-Hua Zhang ◽  
Xiao-Wei Liu ◽  
Hai-Bo Yuan ◽  
Hai-Bin Zhao ◽  
Jin-Sheng Yao ◽  
...  

1975 ◽  
Vol 87 ◽  
pp. 869 ◽  
Author(s):  
J. K. Kalinowski ◽  
R. G. Roosen ◽  
J. C. Brandt

Author(s):  
Hengtao Cui ◽  
Junru Shen ◽  
Yuxuan Huang ◽  
Xinrong Shen ◽  
Chu Wing So ◽  
...  

2020 ◽  
Vol 12 (20) ◽  
pp. 3412
Author(s):  
Andreas Jechow ◽  
Franz Hölker

Artificial skyglow, the brightening of the night sky by artificial light at night that is scattered back to Earth within the atmosphere, is detrimental to astronomical observations and has an impact on ecosystems as a form of light pollution. In this work, we investigated the impact of the lockdown caused by the COVID-19 pandemic on the urban skyglow of Berlin, Germany. We compared night sky brightness and correlated color temperature (CCT) measurements obtained with all-sky cameras during the COVID-19 lockdown in March 2020 with data from March 2017. Under normal conditions, we expected an increase in night sky brightness (or skyglow, respectively) and CCT because of the transition to LED. This is supported by a measured CCT shift to slightly higher values and a time series analysis of night-time light satellite data showing an increase in artificial light emission in Berlin. However, contrary to this observation, we measured a decrease in artificial skyglow at zenith by 20% at the city center and by more than 50% at 58 km distance from the center during the lockdown. We assume that the main cause for the reduction of artificial skyglow originates from improved air quality due to less air and road traffic, which is supported by statistical data and satellite image analysis. To our knowledge, this is the first reported impact of COVID-19 on artificial skyglow and we conclude that air pollution should shift more into the focus of light pollution research.


Sign in / Sign up

Export Citation Format

Share Document