scholarly journals Blocking performance of extended pruned vertically stacked optical banyan structure under different link failure conditions

Author(s):  
Sabrina Alam ◽  
Fahmida Sharmin Jui
2008 ◽  
Vol 1 (1) ◽  
pp. 43-54
Author(s):  
Basra Sultana ◽  
Mamun-ur-Rashid Khandker

Vertically stacked optical banyan (VSOB) networks are attractive for serving as optical switching systems due to the desirable properties (such as the small depth and self-routing capability) of banyan network structures. Although banyan-type networks result in severe blocking and crosstalk, both these problems can be minimized by using sufficient number of banyan planes in the VSOB network structure. The number of banyan planes is minimum for rearrangeably nonblocking and maximum for strictly nonblocking structure. Both results are available for VSOB networks when there exist no internal link-failures. Since the issue of link-failure is unavoidable, we intend to find the minimum number of planes required to make a VSOB network nonblocking when some links are broken or failed in the structure. This paper presents the approximate number of planes required to make a VSOB networks rearrangeably nonblocking allowing link-failures. We also show an interesting behavior of the  blocking  probability of a faulty VSOB networks that the blocking probability may not  always  increase monotonously with  the  increase  of  link-failures; blocking probability  decreases  for  certain range of  link-failures, and then increases again. We believe that such fluctuating behavior of blocking probability with the increase of link failure probability deserves special attention in switch design.  Keywords: Banyan networks; Blocking probability; Switching networks; Vertical stacking; Link-failures. © 2009 JSR Publications. ISSN: 2070-0237(Print); 2070-0245 (Online). All rights reserved. DOI: 10.3329/jsr.v1i1.1070


2013 ◽  
Vol 7 (11) ◽  
pp. 52-57
Author(s):  
Oleg Markovich Terentiev ◽  
◽  
Anton Iosifovich Kleshchov ◽  

2020 ◽  
Vol 37 (4) ◽  
pp. 82-90
Author(s):  
V.V. Krivin ◽  
V.Ya. Shpicer ◽  
V.A. Tolstov ◽  
I.O. Ishigov

Author(s):  
Ryo Takagi ◽  
Toshikatsu Washio ◽  
Yoshihiko Koseki

Abstract Purpose In this study, the robustness and feasibility of a noise elimination method using continuous wave response of therapeutic ultrasound signals were investigated when tissue samples were moved to simulate the respiration-induced movements of the different organs during actual high-intensity focused ultrasound (HIFU) treatment. In addition to that, the failure conditions of the proposed algorithm were also investigated. Methods The proposed method was applied to cases where tissue samples were moved along both the lateral and axial directions of the HIFU transducer to simulate respiration-induced motions during HIFU treatment, and the noise reduction level was investigated. In this experiment, the speed of movement was increased from 10 to 40 mm/s to simulate the actual movement of the tissue during HIFU exposure, with the intensity and driving frequency of HIFU set to 1.0–5.0 kW/cm2 and 1.67 MHz, respectively. To investigate the failure conditions of the proposed algorithm, the proposed method was applied with the HIFU focus located at the boundary between the phantom and water to easily cause cavitation bubbles. The intensity of HIFU was set to 10 kW/cm2. Results Almost all HIFU noise was constantly able to be eliminated using the proposed method when the phantom was moved along the lateral and axial directions during HIFU exposure. The noise reduction level (PRL in this study) at an intensity of 1.0, 3.0, and 5.0 kW/cm2 was in the range of 28–32, 38–40, and 42–45 dB, respectively. On the other hand, HIFU noise was not basically eliminated during HIFU exposure after applying the proposed method in the case of cavitation generation at the HIFU focus. Conclusions The proposed method can be applicable even if homogeneous tissues or organs move axially or laterally to the direction of HIFU exposure because of breathing. A condition under which the proposed algorithm failed was when instantaneous tissue changes such as cavitation bubble generation occurred in the tissue, at which time the reflected continuous wave response became less steady.


Sign in / Sign up

Export Citation Format

Share Document