scholarly journals The Effect of Involving Exceptional Outlier Data on Design Flood Magnitude

2015 ◽  
Vol 10 (2) ◽  
pp. 698-706
Author(s):  
Bagher Heidarpour ◽  
Bahram Saghafian ◽  
Saeed Golian

The term "outlier" is generally used to refer to single data points that appear to depart significantly from the trend of the other data. Outliers are classified into three types: incorrect observations, rare events resulting from essentially the same phenomena as the other maxima, and rare events resulting from a different phenomenon. Flood frequency analysis was first performed on complete data series (including the outlier) and then on the series with the outlier removed. Results revealed that omission of the outlier data didn’t affect the probability distribution function (Log-Pearson type III), but the design discharge reduced by 60 percent in 10000 year return period from 3320 (m3/s) to 1340 (m3/s). Furthermore, the method proposed by the U.S. Water Resources Council (WRC), and the HEC-SSP software were applied in order to compose outlier data with other systematic data and to modify the parameters of the statistical distribution. Using WRC method, the estimated 10000-year flood was equaled to 1907 (m3/s) by designating the outlier as the 200-year return period and revising the parameters of Log-Pearson type III distribution; that is about 43 percent decrease over the scenario involving the outlier.

2019 ◽  
Vol 2 (2) ◽  
Author(s):  
Uttam Pawar ◽  
Pramodkumar Hire

Flood frequency analysis is one of the techniques of examination of peak stream flow frequency and magnitude in the field of flood hydrology, flood geomorphology and hydraulic engineering. In the present study, Log Pearson Type III (LP-III) probability distribution has applied for flood series data of four sites on the Mahi River namely Mataji, Paderdi Badi, Wanakbori and Khanpur and of three sites on its tributaries such as Anas at Chakaliya, Som at Rangeli and Jakham at Dhariawad. The annual maximum series data for the record length of 26-51 years have been used for the present study. The time series plots of the data indicate that two largest ever recorded floods were observed in the year 1973 and 2006 on the Mahi River. The estimated discharges of 100 year return period range between 3676 m3/s and 47632 m3/s. The return period of the largest ever recorded flood on the Mahi River at Wankbori (40663 m3/s) is 127-yr. The recurrence interval of mean annual discharges (Qm) is between 2.73-yr and 3.95-yr, whereas, the return period of large floods (Qlf) range from 6.24-yr to 9.33-yr. The magnitude-frequency analysis curves represent the reliable estimates of the high floods. The fitted lines are fairly close to the most of the data points. Therefore, it can be reliably and conveniently used to read the recurrence intervals for a given magnitude and vice versa.


Author(s):  
Kuldeepak Pal ◽  
Kanhu Charan Panda ◽  
Gaurav Sharma ◽  
Suryansh Mandloi

The study is aimed at finding the best distribution to match the steam flow and calculation of magnitude and frequency of flow. In the current study, we have used several statistical distributions to find the best fit distribution for stream flow and used flood frequency analysis techniques to find the magnitude and frequency of stream flow and non-exceedance probability of peak discharge. The study has been performed at Sikandarpur and Rosera gauging sites of BurhiGandak River. Historical (50 years) maximum annual peak discharge data of each station are used for statistical analysis for estimating maximum peak discharge in 5, 10, 25, 50, 100 year return period. In this study, Lognormal distribution, Galton distribution, Gamma distribution, Log Pearson Type III distribution, Gumbell distribution, Generalised extreme values distribution have been considered to describe the annual maximum stream flow. Flood frequency analysis methods were used for estimating the magnitude of the extreme flow events and their associated return periods. For both Sikandarpur and Rosera stations, Log Pearson type III distributions showed the lowest value of K–S and Chi-square test statistic. The annual probable peak discharge for 5, 10, 25, 50, and 100 years return period is calculated for each distribution. The most suitable distribution for both the stations is found to be the log-Pearson type III distribution.


Author(s):  
Itolima Ologhadien

Flood frequency analysis is a crucial component of flood risk management which seeks to establish a quantile relationship between peak discharges and their exceedance (or non-exceedance) probabilities, for planning, design and management of infrastructure in river basins. This paper evaluates the performance of five probability distribution models using the method of moments for parameter estimation, with five GoF-tests and Q-Q plots for selection of best –fit- distribution. The probability distributions models employed are; Gumbel (EV1), 2-parameter lognormal (LN2), log Pearson type III (LP3), Pearson type III(PR3), and Generalised Extreme Value( GEV). The five statistical goodness – of – fit tests, namely; modified index of agreement (Dmod), relative root mean square error (RRMSE), Nash – Sutcliffe efficiency (NSE), Percent bias (PBIAS), ratio of RMSE and standard deviation of the measurement (RSR) were used to identify the most suitable distribution models. The study was conducted using annual maximum series of nine gauge stations in both Benue and Niger River Basins in Nigeria. The study reveals that GEV was the best – fit distribution in six gauging stations, LP3 was best – fit distribution in two gauging stations, and PR3 is best- fit distribution in one gauging station. This study has provided a significant contribution to knowledge in the choice of distribution models for predicting extreme hydrological events for design of water infrastructure in Nigeria. It is recommended that GEV, PR3 and LP3 should be considered in the development of regional flood frequency using the existing hydrological map of Nigeria.


Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1016 ◽  
Author(s):  
Jianzhu Li ◽  
Yanchen Zheng ◽  
Yimin Wang ◽  
Ting Zhang ◽  
Ping Feng ◽  
...  

Historical extraordinary floods are an important factor in non-stationary flood frequency analysis and they may occur at any time, regardless of whether the environment is changing or not. Based on mixed distribution (MD) modeling, this paper proposed an improved mixed distribution (IMD) model to consider the discontinuity and non-stationarity of flood samples simultaneously, which adds historical extraordinary floods in both sub-series divided by a change point. As a case study, the annual maximum peak discharge and volume series of Ankang hydrological station, located in the upper Hanjiang River Basin of China, were selected to identify non-stationarity by using the variation diagnosis system. MD and IMD were used to fit the flood characteristic series and a genetic algorithm was employed to estimate the optimal parameters. Compared with the design flood values fitted by the stationary Pearson type-III distribution, the results computed by IMD decreased at low return periods and increased at high return periods, with the difference varying from −6.67% to 7.19%. The results highlighted that although the design flood values of IMD are slightly larger than those of MD with different return periods, IMD provided a better result than MD. IMD provides a new perspective for non-stationary flood frequency analysis.


2013 ◽  
Vol 663 ◽  
pp. 768-772
Author(s):  
Li Jie Zhang

The evaluation and reducing of uncertainty is central to the task of hydrological frequency analysis. In this paper a Bayesian Markov Chain Monte Carlo (MCMC) method is employed to infer the parameter values of the probabilistic distribution model and evalue the uncertainties of design flood. Comparison to the estimated results of three-parameter log-normal distribution (LN3) and the three-parameter generalized extreme value distribution (GEV), the Pearson Type 3 distribution (PIII) provides a good approximation to flood-flow data. The choice of the appropriate probabilistic model can reduce uncertainty of design flood estimation. Historical flood events might be greatly reduced uncertainty when incorporating past extreme historical data into the flood frequency analysis.


1999 ◽  
Vol 26 (2) ◽  
pp. 186-196 ◽  
Author(s):  
M -C Bouillon ◽  
F P Brissette ◽  
C Marche

This article presents the first results of a three-year study that aimed at studying, understanding, and characterizing the evolution of flood risk in Quebec. In this study, flood risk is defined as the product of the return period of an event and the damages caused by this event. It is therefore important that both these components of the flood risk be assessed historically. The two components have been evaluated for a 32 km reach of the Châteauguay River located between the Canadian-American border and Ormstown, Quebec. A flood frequency analysis was undertaken on historical flow data for two gauging stations on the river and the data fitted with a log-Pearson type III distribution. The flood risk was then established using a three-step methodology. The first step was to establish flood levels over a range of discharges using a hydraulic model. Then the computed water levels were processed to define the flooded area and determine the property damage. The last step established the global flood risk, taking into account the complete flood distribution function. The results show that over the last 60 years, the global flood risk has increased for all of the study sites along the reach of interest. When the global flood risk is standardized based on population, the evolution of the risk differs greatly between study sites. For one site, the standardized global flood risk has increased by one order of magnitude over the period studied. The results also demonstrate that 75% of the global flood risk is due to floods having a return period of 4 years or less.Key words: flood, risk, damages, numerical modelling, flood forecasting.[Journal translation]


2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Andy O Ibeje

The study outlines a frequency distribution study on the highest annual flood statistics in Niger River located at Shintaku hydrologic Station for period of 58years. In order to determine the optimal model for highest annual flood analysis Generalised extreme value, Log normal, Gumbel maximum, Generalised Pareto and Log Pearson III, were tested. Based on error produced by criteria of goodness of Fit tests, the optimal model was determined. Results obtained indicated that Log Pearson type III was best to model maximum flood magnitude of Niger River at Shintaku station. The flood frequency curve was therefore derived using Log Pearson type III frequency distribution. Flood frequency curve showed that return periods of 50 and 100 years with the probabilities of 2% and1% respectively, yielded discharges of 15300m3/s and 15600m3/s respectively. These results were strongly influenced by their topographical, geographical and climatic factors. The findings of this work will be useful for design engineers in deciding the dimension of hydraulic structures such as spillway, dams, canals, bridges and levees among others. Future studies are required to include flood forecasting in the development of inundation maps for Niger River.Keywords—Return period, Frequency Distribution, Flood, Niger River, Flood Modeling


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1603 ◽  
Author(s):  
Muhammad Rizwan ◽  
Shenglian Guo ◽  
Feng Xiong ◽  
Jiabo Yin

Design flood estimation is very important for hydraulic structure design, reservoir operation, and water resources management. During the last few decades, severe flash floods have caused substantial human, agricultural, and economic damages in Pakistan during the Monsoon seasons. However, despite phenomenal losses, the flood characteristics are rarely investigated. In this paper, flood frequency analysis (FFA) on four major rivers over Pakistan is performed to probe probability distributions (PDs)at the right-tail flood events. For this purpose, (i) we employed ten different probability distributions associating with an L-moments method for constructing FFA models across Pakistan; (ii) we evaluated the best-fit distribution by using goodness-of-fit test and statistical criteria; and finally; (iii) we devised a Monte Carlo simulation to systematically evaluate the robustness of a selected distribution’s fitting performance by using a synthetic data series of different sizes. Our results indicated that generalized Pareto and Weibull emerged as the most viable options for quantifying hydrological quantiles for most of the river basins in Pakistan. Our main findings would provide rich information as references for flood risk assessment and water resource management in Pakistan.


Sign in / Sign up

Export Citation Format

Share Document