scholarly journals Improved Mixed Distribution Model Considering Historical Extraordinary Floods under Changing Environment

Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1016 ◽  
Author(s):  
Jianzhu Li ◽  
Yanchen Zheng ◽  
Yimin Wang ◽  
Ting Zhang ◽  
Ping Feng ◽  
...  

Historical extraordinary floods are an important factor in non-stationary flood frequency analysis and they may occur at any time, regardless of whether the environment is changing or not. Based on mixed distribution (MD) modeling, this paper proposed an improved mixed distribution (IMD) model to consider the discontinuity and non-stationarity of flood samples simultaneously, which adds historical extraordinary floods in both sub-series divided by a change point. As a case study, the annual maximum peak discharge and volume series of Ankang hydrological station, located in the upper Hanjiang River Basin of China, were selected to identify non-stationarity by using the variation diagnosis system. MD and IMD were used to fit the flood characteristic series and a genetic algorithm was employed to estimate the optimal parameters. Compared with the design flood values fitted by the stationary Pearson type-III distribution, the results computed by IMD decreased at low return periods and increased at high return periods, with the difference varying from −6.67% to 7.19%. The results highlighted that although the design flood values of IMD are slightly larger than those of MD with different return periods, IMD provided a better result than MD. IMD provides a new perspective for non-stationary flood frequency analysis.

2013 ◽  
Vol 663 ◽  
pp. 768-772
Author(s):  
Li Jie Zhang

The evaluation and reducing of uncertainty is central to the task of hydrological frequency analysis. In this paper a Bayesian Markov Chain Monte Carlo (MCMC) method is employed to infer the parameter values of the probabilistic distribution model and evalue the uncertainties of design flood. Comparison to the estimated results of three-parameter log-normal distribution (LN3) and the three-parameter generalized extreme value distribution (GEV), the Pearson Type 3 distribution (PIII) provides a good approximation to flood-flow data. The choice of the appropriate probabilistic model can reduce uncertainty of design flood estimation. Historical flood events might be greatly reduced uncertainty when incorporating past extreme historical data into the flood frequency analysis.


Author(s):  
Kuldeepak Pal ◽  
Kanhu Charan Panda ◽  
Gaurav Sharma ◽  
Suryansh Mandloi

The study is aimed at finding the best distribution to match the steam flow and calculation of magnitude and frequency of flow. In the current study, we have used several statistical distributions to find the best fit distribution for stream flow and used flood frequency analysis techniques to find the magnitude and frequency of stream flow and non-exceedance probability of peak discharge. The study has been performed at Sikandarpur and Rosera gauging sites of BurhiGandak River. Historical (50 years) maximum annual peak discharge data of each station are used for statistical analysis for estimating maximum peak discharge in 5, 10, 25, 50, 100 year return period. In this study, Lognormal distribution, Galton distribution, Gamma distribution, Log Pearson Type III distribution, Gumbell distribution, Generalised extreme values distribution have been considered to describe the annual maximum stream flow. Flood frequency analysis methods were used for estimating the magnitude of the extreme flow events and their associated return periods. For both Sikandarpur and Rosera stations, Log Pearson type III distributions showed the lowest value of K–S and Chi-square test statistic. The annual probable peak discharge for 5, 10, 25, 50, and 100 years return period is calculated for each distribution. The most suitable distribution for both the stations is found to be the log-Pearson type III distribution.


2021 ◽  
Vol 5 (1) ◽  
pp. 1-11
Author(s):  
Vitthal Anwat ◽  
Pramodkumar Hire ◽  
Uttam Pawar ◽  
Rajendra Gunjal

Flood Frequency Analysis (FFA) method was introduced by Fuller in 1914 to understand the magnitude and frequency of floods. The present study is carried out using the two most widely accepted probability distributions for FFA in the world namely, Gumbel Extreme Value type I (GEVI) and Log Pearson type III (LP-III). The Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) methods were used to select the most suitable probability distribution at sites in the Damanganga Basin. Moreover, discharges were estimated for various return periods using GEVI and LP-III. The recurrence interval of the largest peak flood on record (Qmax) is 107 years (at Nanipalsan) and 146 years (at Ozarkhed) as per LP-III. Flood Frequency Curves (FFC) specifies that LP-III is the best-fitted probability distribution for FFA of the Damanganga Basin. Therefore, estimated discharges and return periods by LP-III probability distribution are more reliable and can be used for designing hydraulic structures.


2012 ◽  
Vol 4 (1) ◽  
pp. 36-41 ◽  
Author(s):  
Abhijit Bhuyan ◽  
Munindra Borah

The annual maximum discharge data of six gauging sites have been considered for L-moment based regional flood frequency analysis of Tripura, India. Homogeneity of the region has been tested based on heterogeneity measure (H) using method of L-moment. Based on heterogeneity measure it has been observed that the region consist of six gauging sites is homogeneous. Different probability distributions viz. Generalized extreme value (GEV), Generalized Logistic (GLO), Generalized Pareto (GPA), Generalized Normal (GNO), Pearson Type III (PE3) and Wakebay (WAK) have been considered for this investigation. PE3, GNO and GEV have been identified as the candidate distributions based on the L-moment ratio diagram and ZDIST -statistics criteria. Regional growth curves for three candidate distributions have been developed for gauged and ungauged catchments. Monte Carlo simulations technique has also been used to estimate accuracy of the estimated regional growth curves and quantiles. From simulation study it has been observed that PE3 distribution is the robust one.


2021 ◽  
Author(s):  
Xiao Pan ◽  
Ataur Rahman

Abstract Flood frequency analysis (FFA) enables fitting of distribution functions to observed flow data for estimation of flood quantiles. Two main approaches, Annual Maximum (AM) and peaks-over-threshold (POT) are adopted for FFA. POT approach is under-employed due to its complexity and uncertainty associated with the threshold selection and independence criteria for selecting peak flows. This study evaluates the POT and AM approaches using data from 188 gauged stations in south-east Australia. POT approach adopted in this study applies a different average numbers of events per year fitted with Generalised Pareto (GP) distribution with an automated threshold detection method. The POT model extends its parametric approach to Maximum Likelihood Estimator (MLE) and Point Moment Weighted Unbiased (PMWU) method. Generalised Extreme Value (GEV) distribution using L-moment estimator is used for AM approach. It has been found that there is a large difference in design flood estimates between the AM and POT approaches for smaller average recurrence intervals (ARI), with a median difference of 25% for 1.01 year ARI and 5% for 50 and 100 years ARIs.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1867
Author(s):  
Chunlai Qu ◽  
Jing Li ◽  
Lei Yan ◽  
Pengtao Yan ◽  
Fang Cheng ◽  
...  

Under changing environments, the most widely used non-stationary flood frequency analysis (NFFA) method is the generalized additive models for location, scale and shape (GAMLSS) model. However, the model structure of the GAMLSS model is relatively complex due to the large number of statistical parameters, and the relationship between statistical parameters and covariates is assumed to be unchanged in future, which may be unreasonable. In recent years, nonparametric methods have received increasing attention in the field of NFFA. Among them, the linear quantile regression (QR-L) model and the non-linear quantile regression model of cubic B-spline (QR-CB) have been introduced into NFFA studies because they do not need to determine statistical parameters and consider the relationship between statistical parameters and covariates. However, these two quantile regression models have difficulties in estimating non-stationary design flood, since the trend of the established model must be extrapolated infinitely to estimate design flood. Besides, the number of available observations becomes scarcer when estimating design values corresponding to higher return periods, leading to unreasonable and inaccurate design values. In this study, we attempt to propose a cubic B-spline-based GAMLSS model (GAMLSS-CB) for NFFA. In the GAMLSS-CB model, the relationship between statistical parameters and covariates is fitted by the cubic B-spline under the GAMLSS model framework. We also compare the performance of different non-stationary models, namely the QR-L, QR-CB, and GAMLSS-CB models. Finally, based on the optimal non-stationary model, the non-stationary design flood values are estimated using the average design life level method (ADLL). The annual maximum flood series of four stations in the Weihe River basin and the Pearl River basin are taken as examples. The results show that the GAMLSS-CB model displays the best model performance compared with the QR-L and QR-CB models. Moreover, it is feasible to estimate design flood values based on the GAMLSS-CB model using the ADLL method, while the estimation of design flood based on the quantile regression model requires further studies.


Sign in / Sign up

Export Citation Format

Share Document