scholarly journals Investigation of Petrophysical Parameters of Upper Sarvak Formation in One of the Iran South Oilfields

2015 ◽  
Vol 10 (Special-Issue1) ◽  
pp. 740-751
Author(s):  
Ata Movahed ◽  
Mohsen Masihi ◽  
Abdonabi Hashemi

In this study, the upper Sarvak’s petrophysical parameters have been investigated in two A and B wells in one of the oil field in southern Iran. Based on this assessment and the use of conventional cross plots (neutron-density, sonic- neutron, MID_PLOT and M-N PLOT), lithology of upper Sarvak has been identified as a combination of limestone, dolomite and in small amounts, shale. With respect to calculated petrophysical properties and to more precise evaluation, the upper Sarvak in the studied area has been divided into 5 Zones. With respect to the specific petrophysical properties, zone S2 has been divided into 8 subdivisions. Finally, zone S2 with dominant lithology of limestone and with the lowest amount of shale in subdivision 2 and 3, have been recognized as the best reservoir parts.

2021 ◽  
pp. 4810-4818
Author(s):  
Marwah H. Khudhair

     Shuaiba Formation is a carbonate succession deposited within Aptian Sequences. This research deals with the petrophysical and reservoir characterizations characteristics of the interval of interest in five wells of the Nasiriyah oil field. The petrophysical properties were determined by using different types of well logs, such as electric logs (LLS, LLD, MFSL), porosity logs (neutron, density, sonic), as well as gamma ray log. The studied sequence was mostly affected by dolomitization, which changed the lithology of the formation to dolostone and enhanced the secondary porosity that replaced the primary porosity. Depending on gamma ray log response and the shale volume, the formation is classified into three zones. These zones are A, B, and C, each can be split into three rock intervals in respect to the bulk porosity measurements. The resulted porosity intervals are: (I) High to medium effective porosity, (II) High to medium inactive porosity, and (III) Low or non-porosity intervals. In relevance to porosity, resistivity, and water saturation points of view, there are two main reservoir horizon intervals within Shuaiba Formation. Both horizons appear in the middle part of the formation, being located within the wells Ns-1, 2, and 3. These intervals are attributed to high to medium effective porosity, low shale content, and high values of the deep resistivity logs. The second horizon appears clearly in Ns-2 well only.


2020 ◽  
Vol 26 (6) ◽  
pp. 18-34
Author(s):  
Yousif Najeeb Abdul-majeed ◽  
Ahmad Abdullah Ramadhan ◽  
Ahmed Jubiar Mahmood

The aim of this study is interpretation well logs to determine Petrophysical properties of tertiary reservoir in Khabaz oil field using IP software (V.3.5). The study consisted of seven wells which distributed in Khabaz oilfield. Tertiary reservoir composed from mainly several reservoir units. These units are : Jeribe, Unit (A), Unit (A'), Unit (B), Unit (BE), Unit (E),the Unit (B) considers best reservoir unit because it has good Petrophysical properties (low water saturation and high porous media ) with high existence of hydrocarbon in this unit. Several well logging tools such as Neutron, Density, and Sonic log were used to identify total porosity, secondary porosity, and effective porosity in tertiary reservoir. For Lithological identification for tertiary reservoir units using (NPHI-RHOB) cross plot composed of dolomitic-limestone and mineralogical identification using (M/N) cross plot consist of calcite and dolomite. Shale content was estimated less than (8%) for all wells in Khabaz field. CPI results were applied for all wells in Khabaz field which be clarified movable oil concentration in specific units are: Unit (B), Unit (A') , small interval of Jeribe formation , and upper part of Unit (EB).


2021 ◽  
pp. 4758-4768
Author(s):  
Ahmed Hussain ◽  
Medhat E. Nasser ◽  
Ghazi Hassan

     The main goal of this study is to evaluate Mishrif Reservoir in Abu Amood oil field, southern Iraq, using the available well logs. The sets of logs were acquired for wells AAm-1, AAm-2, AAm-3, AAm-4, and AAm-5. The evaluation included the identification of the reservoir units and the calculation of their petrophysical properties using the Techlog software. Total porosity was calculated using the neutron-density method and the values were corrected from the volume of shale in order to calculate the effective porosity. Computer processed interpretation (CPI) was accomplished for the five wells. The results show that Mishrif Formation in Abu Amood field consists of three reservoir units with various percentages of hydrocarbons that were concentrated in all of the three units, but in different wells. All of the units have high porosity, especially unit two, although it is saturated with water.


2020 ◽  
Vol 21 (4) ◽  
pp. 41-48
Author(s):  
Layth Abdulmalik Jameel ◽  
Fadhil S. Kadhim ◽  
Hussein Al-Sudani

Petrophysical properties evaluation from well log analysis has always been crucial for the identification and assessment of hydrocarbon bearing zones. East Baghdad field is located 10 km east of Baghdad city, where the southern area includes the two southern portions of the field, Khasib formation is the main reservoir of East Baghdad oil field. In this paper, well log data of nine wells have been environmentally corrected, where the corrected data used to determine lithology, shale volume, porosity, and water saturation. Lithology identified by two methods; neutron-density and M-N matrix plots, while the shale volume estimated by single shale indicator and dual shale indicator, The porosity is calculated from the three common porosity logs; density log, neutron log, and sonic log, the water saturation is calculated by Indonesian model and Archie equation, and the results of the two methods were compared with the available core data to check the validity of the calculation. The results show that the main lithology in the reservoir is limestone, shale volume ranged between 0.152 to 0.249, porosity between 0.147 to 0.220, and water saturation from 0.627 to 0.966, the high-water saturation indicate that the water quantity is the determining factor of the reservoir units.


2020 ◽  
Vol 21 (3) ◽  
pp. 129
Author(s):  
Ade Yogi

This study presents petrophysics analysis results from two wells located in the Arafura Basin. The analysis carried out to evaluate the reservoir characterization and its relationship to the stratigraphic sequence based on log data from the Koba-1 and Barakan-1 Wells. The stratigraphy correlation section of two wells depicts that in the Cretaceous series a transgression-regression cycle. The petrophysical parameters to be calculated are the shale volume and porosity. The analysis shows that there is a relationship between stratigraphic sequences and petrophysical properties. In the study area, shale volumes used to make complete rock profiles in wells assisted by biostratigraphic data, cutting descriptions, and core descriptions. At the same time, porosity shows a conformity pattern with the transgression-regression cycle.Keywords: petrophysics, reservoir characterization, Cretaceous, transgressive-regressive cycle


2020 ◽  
Vol 21 (3) ◽  
pp. 9-18
Author(s):  
Ahmed Abdulwahhab Suhail ◽  
Mohammed H. Hafiz ◽  
Fadhil S. Kadhim

   Petrophysical characterization is the most important stage in reservoir management. The main purpose of this study is to evaluate reservoir properties and lithological identification of Nahr Umar Formation in Nasiriya oil field. The available well logs are (sonic, density, neutron, gamma-ray, SP, and resistivity logs). The petrophysical parameters such as the volume of clay, porosity, permeability, water saturation, were computed and interpreted using IP4.4 software. The lithology prediction of Nahr Umar formation was carried out by sonic -density cross plot technique. Nahr Umar Formation was divided into five units based on well logs interpretation and petrophysical Analysis: Nu-1 to Nu-5. The formation lithology is mainly composed of sandstone interlaminated with shale according to the interpretation of density, sonic, and gamma-ray logs. Interpretation of formation lithology and petrophysical parameters shows that Nu-1 is characterized by low shale content with high porosity and low water saturation whereas Nu-2 and Nu-4 consist mainly of high laminated shale with low porosity and permeability. Nu-3 is high porosity and water saturation and Nu-5 consists mainly of limestone layer that represents the water zone.


Sign in / Sign up

Export Citation Format

Share Document