scholarly journals Petrophysical Properties and Well Log Interpretations of Tertiary Reservoir in Khabaz Oil Field / Northern Iraq

2020 ◽  
Vol 26 (6) ◽  
pp. 18-34
Author(s):  
Yousif Najeeb Abdul-majeed ◽  
Ahmad Abdullah Ramadhan ◽  
Ahmed Jubiar Mahmood

The aim of this study is interpretation well logs to determine Petrophysical properties of tertiary reservoir in Khabaz oil field using IP software (V.3.5). The study consisted of seven wells which distributed in Khabaz oilfield. Tertiary reservoir composed from mainly several reservoir units. These units are : Jeribe, Unit (A), Unit (A'), Unit (B), Unit (BE), Unit (E),the Unit (B) considers best reservoir unit because it has good Petrophysical properties (low water saturation and high porous media ) with high existence of hydrocarbon in this unit. Several well logging tools such as Neutron, Density, and Sonic log were used to identify total porosity, secondary porosity, and effective porosity in tertiary reservoir. For Lithological identification for tertiary reservoir units using (NPHI-RHOB) cross plot composed of dolomitic-limestone and mineralogical identification using (M/N) cross plot consist of calcite and dolomite. Shale content was estimated less than (8%) for all wells in Khabaz field. CPI results were applied for all wells in Khabaz field which be clarified movable oil concentration in specific units are: Unit (B), Unit (A') , small interval of Jeribe formation , and upper part of Unit (EB).

2021 ◽  
pp. 4810-4818
Author(s):  
Marwah H. Khudhair

     Shuaiba Formation is a carbonate succession deposited within Aptian Sequences. This research deals with the petrophysical and reservoir characterizations characteristics of the interval of interest in five wells of the Nasiriyah oil field. The petrophysical properties were determined by using different types of well logs, such as electric logs (LLS, LLD, MFSL), porosity logs (neutron, density, sonic), as well as gamma ray log. The studied sequence was mostly affected by dolomitization, which changed the lithology of the formation to dolostone and enhanced the secondary porosity that replaced the primary porosity. Depending on gamma ray log response and the shale volume, the formation is classified into three zones. These zones are A, B, and C, each can be split into three rock intervals in respect to the bulk porosity measurements. The resulted porosity intervals are: (I) High to medium effective porosity, (II) High to medium inactive porosity, and (III) Low or non-porosity intervals. In relevance to porosity, resistivity, and water saturation points of view, there are two main reservoir horizon intervals within Shuaiba Formation. Both horizons appear in the middle part of the formation, being located within the wells Ns-1, 2, and 3. These intervals are attributed to high to medium effective porosity, low shale content, and high values of the deep resistivity logs. The second horizon appears clearly in Ns-2 well only.


2021 ◽  
pp. 4702-4711
Author(s):  
Asmaa Talal Fadel ◽  
Madhat E. Nasser

     Reservoir characterization requires reliable knowledge of certain fundamental properties of the reservoir. These properties can be defined or at least inferred by log measurements, including porosity, resistivity, volume of shale, lithology, water saturation, and permeability of oil or gas. The current research is an estimate of the reservoir characteristics of Mishrif Formation in Amara Oil Field, particularly well AM-1, in south eastern Iraq. Mishrif Formation (Cenomanin-Early Touronin) is considered as the prime reservoir in Amara Oil Field. The Formation is divided into three reservoir units (MA, MB, MC). The unit MB is divided into two secondary units (MB1, MB2) while the unit MC is also divided into two secondary units (MC1, MC2). Using Geoframe software, the available well log images (sonic, density, neutron, gamma ray, spontaneous potential, and resistivity logs) were digitized and updated. Petrophysical properties, such as porosity, saturation of water, saturation of hydrocarbon, etc. were calculated and explained. The total porosity was measured using the density and neutron log, and then corrected to measure the effective porosity by the volume content of clay. Neutron -density cross-plot showed that Mishrif Formation lithology consists predominantly of limestone. The reservoir water resistivity (Rw) values of the Formation were calculated using Pickett-Plot method.   


2021 ◽  
pp. 4758-4768
Author(s):  
Ahmed Hussain ◽  
Medhat E. Nasser ◽  
Ghazi Hassan

     The main goal of this study is to evaluate Mishrif Reservoir in Abu Amood oil field, southern Iraq, using the available well logs. The sets of logs were acquired for wells AAm-1, AAm-2, AAm-3, AAm-4, and AAm-5. The evaluation included the identification of the reservoir units and the calculation of their petrophysical properties using the Techlog software. Total porosity was calculated using the neutron-density method and the values were corrected from the volume of shale in order to calculate the effective porosity. Computer processed interpretation (CPI) was accomplished for the five wells. The results show that Mishrif Formation in Abu Amood field consists of three reservoir units with various percentages of hydrocarbons that were concentrated in all of the three units, but in different wells. All of the units have high porosity, especially unit two, although it is saturated with water.


2018 ◽  
Vol 22 (1) ◽  
pp. 45-52 ◽  
Author(s):  
Wria Jihad Jabbar ◽  
Srood Farooq Naqshabandi ◽  
Falah Khalaf Al-Juboury

The current study represents an evaluation of the petrophysical properties in the well Shaikhan-8 for the Garagu, Sarmord and Qamchuqa formations in Shaikhan oilfield, Duhok basin, northern Iraq. The petrophysical evaluation is based on well logs data to delineate the reservoir characteristics. The environmental corrections and petrophysical parameters such as porosity, water saturation, and hydrocarbon saturation are computed and interpreted using Interactive Petrophysics (IP) program. Neutron-density crossplot is used to identify lithological properties. The Qamchuqa Formation in the Shaikhan oilfield consists mainly of dolomite with dolomitic limestone, and the average clay volume is about 13%; while Sarmord Formation composed of limestone and dolomitic limestone, the average clay volume in this formation is about 19%; also the Garagu Formation consists mainly of limestone and dolomitic limestone in addition to sandstone and claystone, the volume of clay in the Garagu Formation is about 20%. Pickett plot method is used to calculate formation water resistivity (Rw), saturation exponent (n) and cementation exponent (m) the values are 0.065ohm, 2, and 2.06 respectively. The porosity ratio (Ø) of the Qamchuqa Formation ranges between 7-15%; this indicates that the lower part of the formation has a poor-fair porosity (7%), while the upper part of the formation has a good porosity (15%). The porosity value decrease toward Sarmord Formation especially in the lower part of the formation, it has a poor porosity (5%), whereas this value reaches to 13% in the upper part of the formation, indicates for fair porosity. Garagu Formation has good porosity, reaches 20% in the lower part, but in the upper part of the formation, this value decreases to 3%. Water saturation (Sw) value which is calculated by Archie equation ranges between 14-33%, while saturation in the flushed zone (Sxo) ranges between 52-73%, these indicate for good movable hydrocarbons are present in the studied interval (840-1320m), and from the total 480m the Early Cretaceous formations in well Shaikhan-8 have 178m pay. 


2020 ◽  
pp. 1362-1369
Author(s):  
Gheed Chaseb ◽  
Thamer A. Mahdi

This study aims to evaluate reservoir characteristics of Hartha Formation in Majnoon oil field based on well logs data for three wells (Mj-1, Mj-3 and Mj-11). Log interpretation was carried out by using a full set of logs to calculate main petrophysical properties such as effective porosity and water saturation, as well as to find the volume of shale. The evaluation of the formation included computer processes interpretation (CPI) using Interactive Petrophysics (IP) software.  Based on the results of CPI, Hartha Formation is divided into five reservoir units (A1, A2, A3, B1, B2), deposited in a ramp setting. Facies associations is added to well logs interpretation of Hartha Formation, and was inferred by a microfacies analysis of thin sections from core and cutting samples. The CPI shows that the A2 is the main oil- bearing unit, which is characterized by good reservoir properties, as indicated by high effective porosity, low water saturation, and low shale volume. Less important units include A1 and A3, because they have low petrophysical properties compared to the unit A2.


2020 ◽  
Vol 5 (2) ◽  
pp. 69-75
Author(s):  
Raja Asim Zeb ◽  
Muhammad Haziq Khan ◽  
Intikhab Alam ◽  
Ahtisham Khalid ◽  
Muhammad Faisal Younas

The lower Indus basin is leading hydrocarbon carriage sedimentary basin in Pakistan. Evaluation of two sorts out wells namely Sawan-2 and Sawan-3 has been assumed in this work for estimation and dispensation of petro physical framework using well log data. The systematic formation assessment by using petro physical studies and neutron density cross plots reveal that lithofacies mainly composed of sandstone. The hydrocarbon capability of the formation zone have been mark through several isometric maps such as water saturation, picket plots, cross plots, log analysis Phie vs depth and composite log analysis. The estimated petro physical properties shows that reservoir have volume of shale 6.1% and 14.0%, total porosity is observed between 14.6% and 18.2%, effective porosity ranges 12.5-16.5%, water saturation exhibits between 14.05% and 31.58%, hydrocarbon saturation ranges 68.42% -86.9%, The lithology of lower goru formation is dominated by very fine to fine and silty sandstone. The study method can be use within the vicinity of central Indus basin and similar basin elsewhere in the globe to quantify petro physical properties of oil and gas wells and comprehend the reservoir potential.


2020 ◽  
Vol 21 (4) ◽  
pp. 41-48
Author(s):  
Layth Abdulmalik Jameel ◽  
Fadhil S. Kadhim ◽  
Hussein Al-Sudani

Petrophysical properties evaluation from well log analysis has always been crucial for the identification and assessment of hydrocarbon bearing zones. East Baghdad field is located 10 km east of Baghdad city, where the southern area includes the two southern portions of the field, Khasib formation is the main reservoir of East Baghdad oil field. In this paper, well log data of nine wells have been environmentally corrected, where the corrected data used to determine lithology, shale volume, porosity, and water saturation. Lithology identified by two methods; neutron-density and M-N matrix plots, while the shale volume estimated by single shale indicator and dual shale indicator, The porosity is calculated from the three common porosity logs; density log, neutron log, and sonic log, the water saturation is calculated by Indonesian model and Archie equation, and the results of the two methods were compared with the available core data to check the validity of the calculation. The results show that the main lithology in the reservoir is limestone, shale volume ranged between 0.152 to 0.249, porosity between 0.147 to 0.220, and water saturation from 0.627 to 0.966, the high-water saturation indicate that the water quantity is the determining factor of the reservoir units.


2021 ◽  
Vol 54 (2C) ◽  
pp. 39-47
Author(s):  
Hussein Y. Ali

Evaluating a reservoir to looking for hydrocarbon bearing zones, by determining the petrophysical properties in two wells of the Yamama Formation in Siba field using Schlumberger Techlog software. Three porosity logs were used to identify lithology using MN and MID cross plots. Shale volume were calculated using gamma ray log in well Sb-6ST1 and corrected gamma ray in well Sb-5B. Sonic log was used to calculate porosity in bad hole intervals while from density log at in-gauge intervals. Moreover, water saturation was computed from the modified Simandoux equation and compared to the Archie equation. Finally, Permeability was estimated using a flow zone indicator. The results show that the Yamama Formation is found to be mainly limestone that confirmed by cuttings description and this lithology intermixed with some dolomite, in addition to gas and secondary porosity effects. Generally, the formation is considered clean due to the low shale volume in both wells with the elimination of the uranium effect in well Sb-5B. The calculated porosity was validated by core porosity in YC and YD units. Modified Simandoux gives a better estimation than the Archie equation since it takes into account the conductive of matrix in addition to the fluid conductivity. Five equations were obtained from porosity permeability relationship of core data based on five hydraulic flow units reorganized from the cross plot of reservoir quality index against normalized porosity index. The overall interpretation showed that YC and YD units are the best quality hydrocarbon units in the Yamama Formation, while YA came in the second importance and has properties better than YB. Moreover, YE and YFG are poor units due to high water saturation.


2020 ◽  
Vol 53 (2F) ◽  
pp. 83-93
Author(s):  
Salam Abdulrahman

The Jaria Pika Gas field is a domal anticlinal structure in the northeast of Iraq NW trending, about 3.6 km long and 1.9 km wide. The 55 m thick gas bearing Jeribe Formation is the main reservoir. This study intends to well log interpretation to determine the petrophysical properties of the Jeribe Formation in the Jaria Pika Gas Field. Total porosity, effect porosity, and secondary porosity have been calculated from neutron, density, and sonic logs. Porosity is fair to good in the Jeribe formation. From RHOB-NPHI and N/M cross plot, the Jeribe Formation is composed mainly of dolomite, limestone with nodules of anhydrite. The Fatha Formation contains considerable amounts of anhydrite layers, so it's represented the cap rocks for the Jeribe Reservoir which is recognized based on the reading of Gamma-ray log, Density log, Neutron log, and Sonic log. The Jaria Pika is considered as gas field as the Jeribe reservoir rocks are gas saturated ones.


2021 ◽  
Vol 11 (7) ◽  
pp. 2877-2890
Author(s):  
Mohammad Abdelfattah Sarhan

AbstractNukhul Formation is one of the primary oil reservoirs in the Gulf of Suez Basin. Rabeh East is an oil producer field located at the southern border of the Gulf of Suez. The present work deals with the geophysical investigation of Nukhul Formation in Rabeh East field using seismic lines and well log data of four wells, namely RE-8, RE-22, RE-25 and Nageh-1. The interpreted seismic profiles display that the RE-8 Well is the only well drilled within the up-thrown side of a significant horst fault block bounded by two normal faults. However, the other wells penetrated the downthrown side. The qualitative interpretation of the well logging data for RE-8 Well delineated two intervals have good petrophysical parameters and ability to store and produce oil. These zones locate between depths 5411.5 and 5424 ft (zone I) and between 5451 and 5459.5 ft (zone II). The calculated petrophysical parameters for zone I display water saturation (22–44%), shale volume (10–23%), total porosity (18–23%), effective porosity (12–20%) and bulk volume of water (0.04–0.06). Zone II exhibits water saturation (13–45%), shale volume (10–30%), total porosity (18–24%), effective porosity (11–20%) and bulk volume of water (0.03–0.05). This analysis reflects excellent petrophysical characteristics for the sandstones of Nukhul Formation in Rabeh East oil field for producing oil if the wells drilled in a suitable structural closure.


Sign in / Sign up

Export Citation Format

Share Document