core descriptions
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 12)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Author(s):  
William Stephen Mills ◽  
Kate Al Tameemi ◽  
Grant Cole ◽  
Claire Gill ◽  
Lucy Manifold ◽  
...  

Abstract The COVID-19 pandemic limited global travel and access to core facilities. However, by adopting an innovative remote core description workflow, potential delays to an important reservoir characterisation study were avoided and mitigated. Over c.1700ft of middle Miocene core from an Onshore well in Abu Dhabi was described using high-resolution core photos, CT scans and CCA data. Detailed (1:20ft scale) descriptions of heterogeneous, mixed lithology sediments from a gas reservoir were produced. The aim when developing the workflow was not to try and replicate the process of in-person core description, but to create a workflow that could be executed remotely, whilst maintaining technical standards. Ideally, we wanted to find a solution that also had the potential to improve the overall quality of core description, by integrating more data from the onset. The workflow used a matrix to generate a confidence score for the description of each cored interval. Factors such as core condition were considered, which highly influences the extractable core information. The confidence score was used to make decisions, such as whether an in-person review of the core was necessary, especially where core condition was below a reasonable threshold. This helped prioritise cored intervals for review, ensuring time in the core store was focused, and allowed accuracy and reliability of the remote description to be assessed. The 4-phase workflow is summarised as: Image extraction of white light (WL), ultraviolet (UV) and computed tomography (CT) core images. Digital chart creation, core-to-log shifts and sample selection: Wireline data, CCA data and core images loaded Core images used to determine core-to-log shifts Thin section, SEM and XRD samples selected Remote core description: Conducted using all core imagery, CCA and wireline data Thin section, SEM and XRD data were used to refine the description when they became available A confidence score was given to each cored interval QC and finalization: Using the results from phase 3, a selection of cored intervals for in-person review was made. Intervals included those with a poor match between remote description and petrographic data, or areas with a low confidence score. Following the review, charts were finalised and quality-checked for data export Using this workflow, ensured work on an important study could continue during the pandemic. Such an approach has continued value for future studies as it increases efficiency and accounts for more data to be considered in core description prior to viewing the core in-person; it has been used on recent studies with great success. Another benefit to this approach is that less time in the core store is required, reducing potential HSE risks and helping to manage core store availability in busy facilities.


2021 ◽  
Author(s):  
Fatai Adesina Anifowose ◽  
Mokhles Mustafa Mezghani ◽  
Saeed Saad Shahrani

Abstract Reservoir rock textural properties such as grain size are typically estimated by direct visual observation of the physical texture of core samples. Grain size is one of the important inputs to petrophysical characterization, sedimentological facies classification, identification of depositional environments, and saturation models. A continuous log of grain size distribution over targeted reservoir sections is usually required for these applications. Core descriptions are typically not available over an entire targeted reservoir section. Physical core data may also be damaged during retrieval or due to plugging. Alternative methods proposed in literature are not sustainable due to their limitations in terms of input data requirements and inflexibility to apply them in environments with different geological settings. This paper presents the preliminary results of our investigation of a new methodology based on machine learning technology to complement and enhance the traditional core description and the alternative methods. We developed and optimized supervised machine learning models comprising K-nearest neighbor (KNN), support vector machines (SVM), and decision tree (DT) to indirectly estimate reservoir rock grain size for a new well or targeted reservoir sections from historical wireline logs and archival core descriptions. We used anonymized datasets consisting of nine wells from a clastic reservoir. Seven of the wells were used to train and optimize the models while the remaining two were reserved for validation. The grain size types range from clay to pebbles. The performance of the models confirmed the feasibility of this approach. The KNN, SVM, and DT models demonstrated the capability to estimate the grain size for the test wells by matching actual data with a minimum of 60% and close to 80% accuracy. This is an accomplishment taking into account the uncertainties inherent in the core analysis data. Further analysis of the results showed that the KNN model is the most accurate in performance compared to the other models. For future studies, we will explore more advanced classification algorithms and implement new class labeling strategies to improve the accuracy of this methodology. The attainment of this objective will further help to handle the complexity in the grain size estimation challenge and reduce the current turnaround time for core description.


2021 ◽  
Author(s):  
Mehrdad Sardar Abadi ◽  
Christian Zeeden ◽  
Arne Ulfers ◽  
Katja Hesse ◽  
Thomas Wonik

<p>Lacustrine sediments are archives of past environmental conditions. In recent decades, multinational ICDP efforts have conducted lake drilling projects to encode the potential of paleoclimate signals. Gamma-ray spectroscopy is a particularly useful tool as it is non-destructive, fast, and affordable even in cased boreholes. Gamma radiation can be used to identify elemental isotopes in the geological record, which is used for stratigraphic correlation and paleoclimatic investigations. </p><p>However, some lake sediments contain tephra layers with specific gamma-ray signatures, presenting a challenge for extracting the primary signals caused by environmental and climatic agents. Here, we use the sediments of Lake Chalco in central Mexico to propose a protocol to identify tephra layers embedded in other sediments using high-resolution spectral gamma-ray spectroscopy. This facilitates dividing the overall sediment column into representative horizons of tephra and non-tephra.</p><p>Among the upper 300 m of the lake deposit, our index detected 363 tephra layers, while 388 total tephra layers (≥1 mm in thickness) were reported from the core description of the same borehole, predicting 92% of tephra layers documented in the lake deposits from core descriptions. We suggest that not only the strength of the gamma-ray signal but also the composition of its constituent energy channels can be used to detect embedded tephra layers.</p>


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1057
Author(s):  
Martha Cather ◽  
Dylan Rose-Coss ◽  
Sara Gallagher ◽  
Natasha Trujillo ◽  
Steven Cather ◽  
...  

Farnsworth Field Unit (FWU), a mature oilfield currently undergoing CO2-enhanced oil recovery (EOR) in the northeastern Texas panhandle, is the study area for an extensive project undertaken by the Southwest Regional Partnership on Carbon Sequestration (SWP). SWP is characterizing the field and monitoring and modeling injection and fluid flow processes with the intent of verifying storage of CO2 in a timeframe of 100–1000 years. Collection of a large set of data including logs, core, and 3D geophysical data has allowed us to build a detailed reservoir model that is well-grounded in observations from the field. This paper presents a geological description of the rocks comprising the reservoir that is a target for both oil production and CO2 storage, as well as the overlying units that make up the primary and secondary seals. Core descriptions and petrographic analyses were used to determine depositional setting, general lithofacies, and a diagenetic sequence for reservoir and caprock at FWU. The reservoir is in the Pennsylvanian-aged Morrow B sandstone, an incised valley fluvial deposit that is encased within marine shales. The Morrow B exhibits several lithofacies with distinct appearance as well as petrophysical characteristics. The lithofacies are typical of incised valley fluvial sequences and vary from a relatively coarse conglomerate base to an upper fine sandstone that grades into the overlying marine-dominated shales and mudstone/limestone cyclical sequences of the Thirteen Finger limestone. Observations ranging from field scale (seismic surveys, well logs) to microscopic (mercury porosimetry, petrographic microscopy, microprobe and isotope data) provide a rich set of data on which we have built our geological and reservoir models.


Author(s):  
A. Ulfers ◽  
K. Hesse ◽  
C. Zeeden ◽  
J. M. Russell ◽  
H. Vogel ◽  
...  

AbstractLake Towuti is located on central Sulawesi/Indonesia, within the Indo Pacific Warm Pool, a globally important region for atmospheric heat and moisture budgets. In 2015 the Towuti Drilling Project recovered more than 1000 m of drill core from the lake, along with downhole geophysical logging data from two drilling sites. The cores constitute the longest continuous lacustrine sediment succession from the Indo Pacific Warm Pool. We combined lithological descriptions with borehole logging data and used multivariate statistics to better understand the cyclic sequence, paleoenvironments, and geochronology of these sediments. Accurate chronologies are crucial to analyze and interpret paleoclimate records. Astronomical tuning can help build age-depth models and fill gaps between age control points. Cyclostratigraphic investigations were conducted on a downhole magnetic susceptibility log from the lacustrine facies (10–98 m below lake floor) from a continuous record of sediments in Lake Towuti. This study provides insights into the sedimentary history of the basin between radiometric ages derived from dating a tephra layer (~ 797 ka) and C14-ages (~ 45 ka) in the cores. We derived an age model that spans from late marine isotope stage (MIS) 23 to late MIS 6 (903 ± 11 to 131 ± 67 ka). Although uncertainties caused by the relatively short record and the small differences in the physical properties of sediments limited the efficacy of our approach, we suggest that eccentricity cycles and/or global glacial-interglacial climate variability were the main drivers of local variations in hydroclimate in central Indonesia. We generated the first nearly complete age-depth model for the lacustrine facies of Lake Towuti and examined the potential of geophysical downhole logging for time estimation and lithological description. Future lake drilling projects will benefit from this approach, since logging data are available just after the drilling campaign, whereas core descriptions, though more resolved, only become available months to years later.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kan-Hsi Hsiung ◽  
Toshiya Kanamatsu ◽  
Ken Ikehara ◽  
Kazuko Usami ◽  
Chorng-Shern Horng ◽  
...  

AbstractThe southwestern Ryukyu Trench represents the ultimate sink of sediments shed from Taiwan into the Philippine Sea, which are mainly transported to the trench by turbidity currents via submarine canyons. Here, we present trench turbidites intercalated with hemipelagites in a gravity pilot core and a piston core acquired on the Ryukyu Trench floor at 6147 m water depth. We performed X-ray fluorescence core scans (ITRAX profiles), magnetic measurements, and organic geochemistry analyses to discriminate turbidites from hemipelagites. We identified 36 turbidites (0.9–4.2 cm thick) based on visual core descriptions and Ca/Fe ratios in the ITRAX profiles. Three of these turbidites show magnetic signatures indicating the presence of pyrrhotite and peaks in the magnetic susceptibility profile, suggesting that Taiwan-sourced sediments are transported to the Ryukyu Trench by long-runout turbidity currents. Pyrrhotite is also present in hemipelagites of the upper part of the retrieved cores, indicating a dominant sediment source in Taiwan over the last several thousand years. Ca/Fe and Zr/Rb ratios in the ITRAX profiles mark distal turbidites (about 1–3 cm thick), and Zr/Rb peaks mainly reflect grain size changes. Detailed analyses of a representative turbidite show good correlation between Ca/Fe and Zr/Rb peaks with upward-coarsening and upward-fining trends that delimit the turbidite. Sedimentary organic matter in hemipelagites is characterized by higher total organic carbon and total nitrogen contents and higher δ13C values than that in turbidites. Our multi-proxy approach employing high-resolution XRF core scans to differentiate turbidites from hemipelagites contributes to establishing a comprehensive view of modern trench sedimentation from Taiwan to the southwestern Ryukyu Trench.


2021 ◽  
Vol 61 (2) ◽  
pp. 714
Author(s):  
Valeri Shelokov ◽  
Robert Hull ◽  
Tony Rudge ◽  
Perry Richmond

A US operator with a commitment to future drilling, stimulation and testing of unconventional wells has initiated a new evaluation to better define and understand the hydrocarbon plays along the northern margin of the Canning Basin’s Lennard Shelf and Fitzroy Trough. The goal of the evaluation is to determine the commercial viability of the region. In this paper, an integrated petrophysical hybrid model that has been calibrated to core data is highlighted. From this model, multiple play types were identified, including an unconventional siltstone-shale play, a conventional basin-centred tight gas play and a fractured tight gas play with potential analogs to North American unconventional plays. Six primary lithofacies were identified through the integration of thin section analyses, core descriptions, logs and petrophysical models. The results were calibrated to high-resolution formation image data to better understand the thin-bedded nature of these plays. The lithofacies were also utilised for defining core poro/perm transforms. Furthermore, an integrated descriptive mud log algorithm was utilised to define the types of hydrocarbons, including wetness, balance and ratios as the hydrocarbons’ fingerprints. Significant gas influxes were noted at the intervals with highly permeable beds, at swarms of fractures and faults, as well as within the organic rich layers. In this study, a pressure top seal for the Laurel Formation was defined as well as the highlights of one well, which includes 11 zones and over 389m of net pay behind pipe. The significance of this work is that it highlights a path forward for unconventional development that, if economically viable, would provide increased energy independence for Australia.


2020 ◽  
Vol 21 (3) ◽  
pp. 129
Author(s):  
Ade Yogi

This study presents petrophysics analysis results from two wells located in the Arafura Basin. The analysis carried out to evaluate the reservoir characterization and its relationship to the stratigraphic sequence based on log data from the Koba-1 and Barakan-1 Wells. The stratigraphy correlation section of two wells depicts that in the Cretaceous series a transgression-regression cycle. The petrophysical parameters to be calculated are the shale volume and porosity. The analysis shows that there is a relationship between stratigraphic sequences and petrophysical properties. In the study area, shale volumes used to make complete rock profiles in wells assisted by biostratigraphic data, cutting descriptions, and core descriptions. At the same time, porosity shows a conformity pattern with the transgression-regression cycle.Keywords: petrophysics, reservoir characterization, Cretaceous, transgressive-regressive cycle


2020 ◽  
Author(s):  
Arne Ulfers ◽  
Katja Hesse ◽  
Thomas Wonik

<p>Lake Towuti is a tectonic lake on central Sulawesi, Indonesia. It is located within the Indo Pacific Warm Pool, a convection cell which has major impact on tropical climate and the ability to project its influence on a global scale (Chiang, 2009; De Deckker, 2016). Pre-site surveys using seismic methods and piston cores indicated that sediments in Lake Towuti provide best conditions to obtain a long-term paleoclimate record in this key region (Russel et al., 2014).  </p><p>During an ICDP-project in 2015, downhole logging equipment of the Leibniz Institute for Applied Geophysics was used at two drill-sites to record a series of chemical and physical parameters (spectral gamma ray, magnetic susceptibility, resistivity, sonic velocity, dipmeter, ultrasonic imaging of the borehole wall). Continuous lithological logs based on downhole logging data were constructed using cluster analysis. Although the spatial resolution of constructed logs is not as detailed as core descriptions, good correlation to core descriptions and differentiation between the upper lacustrine facies and the lower pre-lacustrine facies (Russell et al., 2016) show that cluster analysis is a powerful tool in giving an instant overview of in situ sediments and determining their physical properties.</p><p>Cyclostratigraphic methods in downhole logging can help developing a better understanding of sedimentation rates and thus improving age-depth models for lacustrine sediments (Molinie and Ogg, 1990; Hinnov, 2013; Baumgarten et al., 2015). In case of Lake Towuti, a magnetic susceptibility log from the upper lacustrine facies (0-98 meters below lake floor) was analysed to calculate changes in sediment influx. A careful pre-processing of the data is crucial to secure undisturbed amplitude spectra. This includes the identification and exclusion of event-layers (tephra and turbidite-like mass movement deposits) from the log. Also side effects of those layers to surrounding sediments were diminished from the record.</p><p>Sedimentation rates for certain parts were calculated and complement the preliminarily age model derived from <sup>14</sup>C- (Russel et al., 2014) and tephra-dating (A. Deino, personal communication, December, 2018). Further refining of the model and omission of an interpretation of long cyclicities results in the most detailed age-depth model for Lake Towuti, and thus is a fundamental step towards our understanding of paleoclimate processes in this region.</p>


2020 ◽  
Vol 17 (2) ◽  
pp. 1447-1459
Author(s):  
Najmuddin Abdul Rahim ◽  
Wan Ismail Wan Yusoff

Reservoir stratigraphic continuity are uncertainties that may be due to lack of facies association definition in reservoirs. These uncertainties come into play where proper porosity–permeability (poroperm) evaluation is misrepresented, leading to volumetric estimation uncertainties. Most oil fields in the Baram Delta have been previously studied with the development of static models. The lack of sequence stratigraphic input in the study was due to constraints including fault shadowing and gas chimney presence which deterred the volume estimations. Earlier interpretation of facies distribution and depositional environment of a field, named X, was achieved mainly by using core descriptions and interpretations. In this study, a reinterpretation of the depositional environment and facies distribution were carried out in the R1 and R2 reservoirs. The analysis was done by incorporating the depositional environment and facies with newly interpreted facies comprising of sand, silty sand, sandy shale and shale facies, created using neural network programme. Utilising newly set facies definitions with additional inputs including porosity and permeability data, a better facies distribution for the reservoir is emplaced. With the facies definitions set for 3 wells, the reservoir quality was investigated through poroperm relationship, reservoir quality index (RQI) and fluid flow unit interpretation. The new definitions for reservoir facies consequently matched well to the core descriptions. The R1 reservoir facies-poroperm relationship were clustered well with respect to each facies type. The RQI was then evaluated from the permeability and porosity values for all the selected wells. The fluid flow units were estimated using depth interval difference, effective porosity and permeability data. The fluid flow regimes are different for all the wells, where the updip Well B displayed significantly better flow capacity than both Well C and Well A. However, Well C also displayed good fluid flow capability, indicated by high gradient flow capacity over storage capacity, although with presence of some layers of poor flow quality. Good communication for the downdip wells provides a potential for lateral fluid flow component which can influence the storage and flow capacity of fluid in the updip Well A, and thus creating an overall control and validation of fluid capacity in the reservoir.


Sign in / Sign up

Export Citation Format

Share Document