scholarly journals Clean coalgebras and clean comodules of finitely generated projective modules

2021 ◽  
Vol 31 (2) ◽  
pp. 251-260
Author(s):  
N. P. Puspita ◽  
◽  
I. E. Wijayanti ◽  
B. Surodjo ◽  
◽  
...  

Let R be a commutative ring with multiplicative identity and P is a finitely generated projective R-module. If P∗ is the set of R-module homomorphism from P to R, then the tensor product P∗⊗RP can be considered as an R-coalgebra. Furthermore, P and P∗ is a comodule over coalgebra P∗⊗RP. Using the Morita context, this paper give sufficient conditions of clean coalgebra P∗⊗RP and clean P∗⊗RP-comodule P and P∗. These sufficient conditions are determined by the conditions of module P and ring R.

1979 ◽  
Vol 28 (3) ◽  
pp. 335-345 ◽  
Author(s):  
Nicholas S. Ford

AbstractLet R be a commutative ring with identity, and let A be a finitely generated R-algebra with Jacobson radical N and center C. An R-inertial subalgebra of A is a R-separable subalgebra B with the property that B+N=A. Suppose A is separable over C and possesses a finite group G of R-automorphisms whose restriction to C is faithful with fixed ring R. If R is an inertial subalgebra of C, necessary and sufficient conditions for the existence of an R-inertial subalgebra of A are found when the order of G is a unit in R. Under these conditions, an R-inertial subalgebra B of A is characterized as being the fixed subring of a group of R-automorphisms of A. Moreover, A ⋍ B ⊗R C. Analogous results are obtained when C has an R-inertial subalgebra S ⊃ R.


2020 ◽  
Vol 27 (1) ◽  
pp. 103-110
Author(s):  
Shahram Motmaen ◽  
Ahmad Yousefian Darani

AbstractIn this paper, we introduce some classes of R-modules that are closely related to the classes of Prüfer, Dedekind and Bezout modules. Let R be a commutative ring with identity and set\mathbb{H}=\bigl{\{}M\mid M\text{ is an }R\text{-module and }\mathrm{Nil}(M)% \text{ is a divided prime submodule of }M\bigr{\}}.For an R-module {M\in\mathbb{H}}, set {T=(R\setminus Z(R))\cap(R\setminus Z(M))}, {\mathfrak{T}(M)=T^{-1}M} and {P=(\mathrm{Nil}(M):_{R}M)}. In this case, the mapping {\Phi:\mathfrak{T}(M)\to M_{P}} given by {\Phi(x/s)=x/s} is an R-module homomorphism. The restriction of Φ to M is also an R-module homomorphism from M into {M_{P}} given by {\Phi(x)=x/1} for every {x\in M}. A nonnil submodule N of M is said to be Φ-invertible if {\Phi(N)} is an invertible submodule of {\Phi(M)}. Moreover, M is called a Φ-Prüfer module if every finitely generated nonnil submodule of M is Φ-invertible. If every nonnil submodule of M is Φ-invertible, then we say that M is a Φ-Dedekind module. Furthermore, M is said to be a Φ-Bezout module if {\Phi(N)} is a principal ideal of {\Phi(M)} for every finitely generated submodule N of the R-module M. The paper is devoted to the study of the properties of Φ-Prüfer, Φ-Dedekind and Φ-Bezout R-modules.


2003 ◽  
Vol 02 (04) ◽  
pp. 435-449 ◽  
Author(s):  
ALBERTO FACCHINI ◽  
FRANZ HALTER-KOCH

We study some applications of the theory of commutative monoids to the monoid [Formula: see text] of all isomorphism classes of finitely generated projective right modules over a (not necessarily commutative) ring R.


2015 ◽  
Vol 29 ◽  
pp. 144-155
Author(s):  
K. Prasad ◽  
Nupur Nandini ◽  
Divya Shenoy

In this paper, we invoke theory of generalized inverses and minus partial order on regular matrices over a commutative ring to define rank–function for regular matrices and dimension–function for finitely generated projective modules which are direct summands of a free module. Some properties held by the rank of a matrix and the dimension of a vector space over a field are generalized. Also, a generalization of rank-nullity theorem has been established when the matrix given is regular.


1988 ◽  
Vol 30 (2) ◽  
pp. 215-220 ◽  
Author(s):  
José L. Gómez Pardo ◽  
Nieves Rodríguez González

A ring R is called left QF-3 if it has a minimal faithful left R-module. The endomorphism ring of such a module has been recently studied in [7], where conditions are given for it to be a left PF ring or a QF ring. The object of the present paper is to study, more generally, when the endomorphism ring of a Σ-quasi-projective module over any ring R is left QF-3. Necessary and sufficient conditions for this to happen are given in Theorem 2. An useful concept in this investigation is that of a QF-3 module which has been introduced in [11]. If M is a finitely generated quasi-projective module and σ[M] denotes the category of all modules isomorphic to submodules of modules generated by M, then we show that End(RM) is a left QF-3 ring if and only if the quotient module of M modulo its torsion submodule (in the torsion theory of σ[M] canonically defined by M) is a QF-3 module (Corollary 4). Finally, we apply these results to the study of the endomorphism ring of a minimal faithful R-module over a left QF-3 ring, extending some of the results of [7].


2011 ◽  
Vol 18 (03) ◽  
pp. 507-518
Author(s):  
Huanyin Chen

In this paper, we obtain several necessary and sufficient conditions under which a quasi-projective module has the finite exchange property. Applications to finitely generated modules are also studied. These extend some corresponding results on exchange rings.


2019 ◽  
Vol 19 (05) ◽  
pp. 2050091
Author(s):  
Yılmaz Durğun

In a recent paper, Holston et al. have defined a module [Formula: see text] to be [Formula: see text]-subprojective if for every epimorphism [Formula: see text] and homomorphism [Formula: see text], there exists a homomorphism [Formula: see text] such that [Formula: see text]. Clearly, every module is subprojective relative to any projective module. For a module [Formula: see text], the subprojectivity domain of [Formula: see text] is defined to be the collection of all modules [Formula: see text] such that [Formula: see text] is [Formula: see text]-subprojective. We consider, for every pure-projective module [Formula: see text], the subprojective domain of [Formula: see text]. We show that the flat modules are the only ones sharing the distinction of being in every single subprojectivity domain of pure-projective modules. Pure-projective modules whose subprojectivity domain is as small as possible will be called pure-projective indigent (pp-indigent). Properties of subprojectivity domains of pure-projective modules and of pp-indigent modules are studied. For various classes of modules (such as simple, cyclic, finitely generated and singular), necessary and sufficient conditions for the existence of pp-indigent modules of those types are studied. We characterize the structure of a Noetherian ring over which every (simple, cyclic, finitely generated) pure-projective module is projective or pp-indigent. Furthermore, finitely generated pp-indigent modules on commutative Noetherian hereditary rings are characterized.


1971 ◽  
Vol 14 (3) ◽  
pp. 415-417 ◽  
Author(s):  
George Szeto

In [5], DeMeyer extended one consequence of Wedderburn's theorem; that is, if R is a commutative ring with a finite number of maximal ideals (semi-local) and with no idempotents except 0 and 1 or if R is the ring of polynomials in one variable over a perfect field, then there is a unique (up to isomorphism) indecomposable finitely generated projective module over a central separable R-algebra A.


1993 ◽  
Vol 78 (1) ◽  
pp. 201-221 ◽  
Author(s):  
Robert Gilmer ◽  
William Heinzer

Sign in / Sign up

Export Citation Format

Share Document