On Φ-Dedekind, Φ-Prüfer and Φ-Bezout modules

2020 ◽  
Vol 27 (1) ◽  
pp. 103-110
Author(s):  
Shahram Motmaen ◽  
Ahmad Yousefian Darani

AbstractIn this paper, we introduce some classes of R-modules that are closely related to the classes of Prüfer, Dedekind and Bezout modules. Let R be a commutative ring with identity and set\mathbb{H}=\bigl{\{}M\mid M\text{ is an }R\text{-module and }\mathrm{Nil}(M)% \text{ is a divided prime submodule of }M\bigr{\}}.For an R-module {M\in\mathbb{H}}, set {T=(R\setminus Z(R))\cap(R\setminus Z(M))}, {\mathfrak{T}(M)=T^{-1}M} and {P=(\mathrm{Nil}(M):_{R}M)}. In this case, the mapping {\Phi:\mathfrak{T}(M)\to M_{P}} given by {\Phi(x/s)=x/s} is an R-module homomorphism. The restriction of Φ to M is also an R-module homomorphism from M into {M_{P}} given by {\Phi(x)=x/1} for every {x\in M}. A nonnil submodule N of M is said to be Φ-invertible if {\Phi(N)} is an invertible submodule of {\Phi(M)}. Moreover, M is called a Φ-Prüfer module if every finitely generated nonnil submodule of M is Φ-invertible. If every nonnil submodule of M is Φ-invertible, then we say that M is a Φ-Dedekind module. Furthermore, M is said to be a Φ-Bezout module if {\Phi(N)} is a principal ideal of {\Phi(M)} for every finitely generated submodule N of the R-module M. The paper is devoted to the study of the properties of Φ-Prüfer, Φ-Dedekind and Φ-Bezout R-modules.

2017 ◽  
Vol 37 (1) ◽  
pp. 153-168
Author(s):  
Hosein Fazaeli Moghimi ◽  
Batool Zarei Jalal Abadi

‎Let $R$ be a commutative ring with identity‎, ‎and $n\geq 1$ an integer‎. ‎A proper submodule $N$ of an $R$-module $M$ is called‎ ‎an $n$-prime submodule if whenever $a_1 \cdots a_{n+1}m\in N$ for some non-units $a_1‎, ‎\ldots‎ , ‎a_{n+1}\in R$ and $m\in M$‎, ‎then $m\in N$ or there are $n$ of the $a_i$'s whose product is in $(N:M)$‎. ‎In this paper‎, ‎we study $n$-prime submodules as a generalization of prime submodules‎. ‎Among other results‎, ‎it is shown that if $M$ is a finitely generated faithful multiplication module over a Dedekind domain $R$‎, ‎then every $n$-prime submodule of $M$ has the form $m_1\cdots m_t M$ for some maximal ideals $m_1,\ldots,m_t$ of $R$ with $1\leq t\leq n$‎.


Author(s):  
BRUCE OLBERDING

AbstractLetPbe a finitely generated ideal of a commutative ringR. Krull's principal ideal theorem states that ifRis Noetherian andPis minimal over a principal ideal ofR, thenPhas height at most one. Straightforward examples show that this assertion fails ifRis not Noetherian. We consider what can be asserted in the non-Noetherian case in place of Krull's theorem.


2021 ◽  
Vol 31 (2) ◽  
pp. 251-260
Author(s):  
N. P. Puspita ◽  
◽  
I. E. Wijayanti ◽  
B. Surodjo ◽  
◽  
...  

Let R be a commutative ring with multiplicative identity and P is a finitely generated projective R-module. If P∗ is the set of R-module homomorphism from P to R, then the tensor product P∗⊗RP can be considered as an R-coalgebra. Furthermore, P and P∗ is a comodule over coalgebra P∗⊗RP. Using the Morita context, this paper give sufficient conditions of clean coalgebra P∗⊗RP and clean P∗⊗RP-comodule P and P∗. These sufficient conditions are determined by the conditions of module P and ring R.


2003 ◽  
Vol 2003 (69) ◽  
pp. 4373-4387 ◽  
Author(s):  
A. Idelhadj ◽  
R. Tribak

A moduleMis⊕-supplemented if every submodule ofMhas a supplement which is a direct summand ofM. In this paper, we show that a quotient of a⊕-supplemented module is not in general⊕-supplemented. We prove that over a commutative ringR, every finitely generated⊕-supplementedR-moduleMhaving dual Goldie dimension less than or equal to three is a direct sum of local modules. It is also shown that a ringRis semisimple if and only if the class of⊕-supplementedR-modules coincides with the class of injectiveR-modules. The structure of⊕-supplemented modules over a commutative principal ideal ring is completely determined.


1980 ◽  
Vol 23 (4) ◽  
pp. 457-459 ◽  
Author(s):  
D. D. Anderson

The classical rings of number theory, Dedekind domains, are characterized by the property that every ideal is a product of prime ideals. More generally, a commutative ring R with identity has the property that every ideal is a product of prime ideals if and only if R is a finite direct sum of Dedekind domains and special principal ideal rings. These rings, called general Z.P.I. rings, are also characterized by the property that every (prime) ideal is finitely generated and locally principal.


2011 ◽  
Vol 84 (3) ◽  
pp. 433-440
Author(s):  
A. HAGHANY ◽  
M. MAZROOEI ◽  
M. R. VEDADI

AbstractGeneralizing the concept of right bounded rings, a module MR is called bounded if annR(M/N)≤eRR for all N≤eMR. The module MR is called fully bounded if (M/P) is bounded as a module over R/annR(M/P) for any ℒ2-prime submodule P◃MR. Boundedness and right boundedness are Morita invariant properties. Rings with all modules (fully) bounded are characterized, and it is proved that a ring R is right Artinian if and only if RR has Krull dimension, all R-modules are fully bounded and ideals of R are finitely generated as right ideals. For certain fully bounded ℒ2-Noetherian modules MR, it is shown that the Krull dimension of MR is at most equal to the classical Krull dimension of R when both dimensions exist.


1970 ◽  
Vol 11 (4) ◽  
pp. 490-498
Author(s):  
P. M. Cohn

Free ideal rings (or firs, cf. [2, 3] and § 2 below) form a noncommutative analogue of principal ideal domains, to which they reduce in the commutative case, and in [3] a category TR of right R-modules was defined, over any fir R, which forms an analogue of finitely generated torsion modules. The category TR was shown to be abelian, and all its objects have finite composition length; more over, the corresponding category RT of left R-modules is dual to TR.


1993 ◽  
Vol 78 (1) ◽  
pp. 201-221 ◽  
Author(s):  
Robert Gilmer ◽  
William Heinzer

2021 ◽  
Vol 10 (11) ◽  
pp. 3479-3489
Author(s):  
K. Al-Zoubi ◽  
M. Al-Azaizeh

Let $G$ be an abelian group with identity $e$. Let $R$ be a $G$-graded commutative ring with identity, $M$ a graded $R$-module and $S\subseteq h(R)$ a multiplicatively closed subset of $R$. In this paper, we introduce the concept of graded $S$-prime submodules of graded modules over graded commutative rings. We investigate some properties of this class of graded submodules and their homogeneous components. Let $N$ be a graded submodule of $M$ such that $(N:_{R}M)\cap S=\emptyset $. We say that $N$ is \textit{a graded }$S$\textit{-prime submodule of }$M$ if there exists $s_{g}\in S$ and whenever $a_{h}m_{i}\in N,$ then either $s_{g}a_{h}\in (N:_{R}M)$ or $s_{g}m_{i}\in N$ for each $a_{h}\in h(R) $ and $m_{i}\in h(M).$


Sign in / Sign up

Export Citation Format

Share Document