scholarly journals Low-intensity treadmill exercise protects cognitive impairment by enhancing cerebellar mitochondrial calcium retention capacity in a rat model of chronic cerebral hypoperfusion

2021 ◽  
Vol 17 (5) ◽  
pp. 324-330
Author(s):  
Jae-Min Lee ◽  
Jongmin Park ◽  
Joo-Hee Lee ◽  
Hyo-Bum Kwak ◽  
Mi-Hyun No ◽  
...  

Chronic cerebral hypoperfusion (CCH) is caused by reduced blood flow to the brain representing gradually cognitive impairment. CCH induces mitochondrial dysfunction and neuronal cell death in the brain. Exercise is known to have a neuroprotective effect on brain damage and cognitive dysfunction. This study aimed to clarify the neuroprotective effect of low-intensity treadmill exercise (LITE) by enhancing cerebellar mitochondrial calcium retention capacity in an animal model of CCH. Wistar rats were divided into the sham group, the bilateral common carotid arteries occlusion (BCCAO) group, and the BCCAO and treadmill exercise (BCCAO+Ex) group. BCCAO+Ex group engaged the LITE on a treadmill for 30 min once a day for 8 weeks before the BCCAO surgery to investigate the protective effect of LITE on cognitive impairment. CCH induced by BCCAO resulted in mitochondrial dysfunction in the cerebellum, including impaired calcium homeostasis. CCH also decreased cerebellar Purkinje cells including of calbindin D28k and parvalbumin, resulting in cognitive impairment. The impairment of mitochondrial function, loss of cerebellar Purkinje cells, and cognitive dysfunction ameliorated by exercise. The present study showed that LITE hindered the deficit of spatial working memory and loss of Purkinje cell in the cerebellum induced by CCH. We confirmed that the protective effect of LITE on Purkinje cell by enhanced the mitochondrial calcium retention capacity. We suggest that LITE may protect against cognitive impairment, and further studies are needed to develop the intervention for patients who suffered from CCH.

Aging Cell ◽  
2016 ◽  
Vol 16 (1) ◽  
pp. 73-81 ◽  
Author(s):  
Ignacio Amigo ◽  
Sergio Luiz Menezes-Filho ◽  
Luis Alberto Luévano-Martínez ◽  
Bruno Chausse ◽  
Alicia J. Kowaltowski

2018 ◽  
Vol 14 (6) ◽  
pp. 920-926 ◽  
Author(s):  
Mi-Hyun No ◽  
Jun-Won Heo ◽  
Su-Zi Yoo ◽  
Han-Sam Jo ◽  
Dong-Ho Park ◽  
...  

Life Sciences ◽  
2019 ◽  
Vol 235 ◽  
pp. 116841 ◽  
Author(s):  
Devasena Ponnalagu ◽  
Ahmed Tafsirul Hussain ◽  
Rushi Thanawala ◽  
Jahnavi Meka ◽  
Piotr Bednarczyk ◽  
...  

2019 ◽  
pp. 59-65 ◽  
Author(s):  
R. Endlicher ◽  
Z. Drahota ◽  
Z. Červinková

By determining the calcium retention capacity (CRC) of rat liver mitochondria, we confirmed and extended previous observations describing the activation of mitochondrial swelling by phosphate and tert-butyl hydroperoxide (t-BHP). Using CRC measurements, we showed that both phosphate and t-BHP decrease the extent of calcium accumulation required for the full mitochondrial permeability transition pore (MPTP) opening to 35 % of control values and to only 15 % when both phosphate and t-BHP are present in the medium. When changes in fluorescence were evaluated at higher resolution, we observed that in the presence of cyclosporine A fluorescence values return after each Ca(2+) addition to basal values obtained before the Ca(2+) addition. This indicates that the MPTP remains closed. However, in the absence of cyclosporine A, the basal fluorescence after each Ca(2+) addition continuously increased. This increase was potentiated both by phosphate and t-BHP until the moment when the concentration of intramitochondrial calcium required for the full opening of the MPTP was reached. We conclude that in the absence of cyclosporine A, the MPTP is slowly opened after each Ca(2+) addition and that this rate of opening can be modified by various factors such as the composition of the media and the experimental protocol used.


Sign in / Sign up

Export Citation Format

Share Document