ground squirrels
Recently Published Documents


TOTAL DOCUMENTS

1744
(FIVE YEARS 167)

H-INDEX

67
(FIVE YEARS 4)

Author(s):  
Anusha Shankar ◽  
Isabelle N. H. Cisneros ◽  
Sarah Thompson ◽  
Catherine H. Graham ◽  
Donald R. Powers

Many endotherms use torpor, saving energy by a controlled reduction of their body temperature and metabolic rate. Some species (e.g., arctic ground squirrels, hummingbirds) enter deep torpor, dropping their body temperatures by 23-37°C, while others can only enter shallow torpor (e.g., pigeons, 3-10°C reductions). However, deep torpor in mammals can increase predation risk (unless animals are in burrows or caves), inhibit immune function, and result in sleep deprivation, so even for species that can enter deep torpor, facultative shallow torpor might help balance energy savings with these potential costs. Deep torpor occurs in three avian orders, but the trade-offs of deep torpor in birds are unknown. Although the literature hints that some bird species (mousebirds and perhaps hummingbirds) can use both shallow and deep torpor, little empirical evidence of such an avian heterothermy spectrum within species exists. We infrared imaged three hummingbird species that are known to use deep torpor, under natural temperature and light cycles, to test if they were also capable of shallow torpor. All three species used both deep and shallow torpor, often on the same night. Depending on the species, they used shallow torpor for 5-35% of the night. The presence of a heterothermic spectrum in these bird species indicates a capacity for fine-scale physiological and genetic regulation of avian torpid metabolism.


2022 ◽  
Vol 4 (1) ◽  
Author(s):  
Edna Chiang ◽  
Courtney L. Deblois ◽  
Hannah V. Carey ◽  
Garret Suen

Abstract Background Hibernating animals experience extreme changes in diet that make them useful systems for understanding host-microbial symbioses. However, most of our current knowledge about the hibernator gut microbiota is derived from studies using captive animals. Given that there are substantial differences between captive and wild environments, conclusions drawn from studies with captive hibernators may not reflect the gut microbiota’s role in the physiology of wild animals. To address this, we used Illumina-based sequencing of the 16S rRNA gene to compare the bacterial cecal microbiotas of captive and wild 13-lined ground squirrels (TLGS) in the summer. As the first study to use Illumina-based technology to compare the microbiotas of an obligate rodent hibernator across the year, we also reported changes in captive TLGS microbiotas in summer, winter, and spring. Results Wild TLGS microbiotas had greater richness and phylogenetic diversity with less variation in beta diversity when compared to captive microbiotas. Taxa identified as core operational taxonomic units (OTUs) and found to significantly contribute to differences in beta diversity were primarily in the families Lachnospiraceae and Ruminococcaceae. Captive TLGS microbiotas shared phyla and core OTUs across the year, but active season (summer and spring) microbiotas had different alpha and beta diversities than winter season microbiotas. Conclusions This is the first study to compare the microbiotas of captive and wild rodent hibernators. Our findings suggest that data from captive and wild ground squirrels should be interpreted separately due to their distinct microbiotas. Additionally, as the first study to compare seasonal microbiotas of obligate rodent hibernators using Illumina-based 16S rRNA sequencing, we reported changes in captive TLGS microbiotas that are consistent with previous work. Taken together, this study provides foundational information for improving the reproducibility and experimental design of future hibernation microbiota studies.


Author(s):  
Bryan S. McLean ◽  
Kayce C. Bell ◽  
Joseph A. Cook
Keyword(s):  

2021 ◽  
Author(s):  
Sangeetha Kandoi ◽  
Cassandra Martinez ◽  
Dana Merriman ◽  
Deepak A Lamba

Purpose: The cone-dominant, 13-lined ground squirrel (13-LGS) retina mimics the human foveal region but retinal development in this useful rodent species has not been reported. Here, the embryonic and postnatal development of the 13-LGS retina was studied to further characterize the species as a practical alternative animal model for investigating cone-based vision in health and disease. Methods: The spatiotemporal expression of key progenitor and cell type markers was examined in retinas from defined embryonic and postnatal stages using immunohistochemistry. Changes in the postnatal gene expression were also assessed by qPCR. Results: The 13-LGS neuroblastic layer expressed key progenitor markers (Sox2, Vsx2, Pax6, and Lhx2) at E18. Sequential cell fate determination evidenced by the first appearance of cell type-specific marker labeling was: at E18, ganglion cells (Brn-3A, HuC/D) and microglia (Iba1); at E24-25.5 shortly before birth, photoreceptor progenitor (Otx2, Recoverin), horizontal and amacrine cells (Lhx1, Oc1); and at P15, bipolar cells (Vsx1, CaBP5) and Muller glia cells (GS, Rlbp1). Photoreceptor maturation indicated by opsin+ outer segments and PNA labeling of cone sheaths was completed at the time of eye opening, P21-24. Conclusions: The timeline and order of retinal cell development in the 13-LGS generally matches that recorded from other mammalian models but with a stark variation in the proportion of various cell types due to cone-dense photoreceptors. This provides a baseline for future examinations of developmental, disease model, and stem cell approach studies employing this emerging rodent model of human vision.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sarah V. Emser ◽  
Helmut Schaschl ◽  
Eva Millesi ◽  
Ralf Steinborn

Enriching mitochondrial DNA (mtDNA) for sequencing entire mitochondrial genomes (mitogenomes) can be achieved by single long-range PCR. This avoids interference from the omnipresent nuclear mtDNA sequences (NUMTs). The approach is currently restricted to the use of samples collected from humans and ray-finned fishes. Here, we extended the use of single long-range PCR by introducing back-to-back oligonucleotides that target a sequence of extraordinary homology across vertebrates. The assay was applied to five hibernating rodents, namely alpine marmot, Arctic and European ground squirrels, and common and garden dormice, four of which have not been fully sequenced before. Analysis of the novel mitogenomes focussed on the prediction of mitochondrial-derived peptides (MDPs) providing another level of information encoded by mtDNA. The comparison of MOTS-c, SHLP4 and SHLP6 sequences across vertebrate species identified segments of high homology that argue for future experimentation. In addition, we evaluated four candidate polymorphisms replacing an amino acid in mitochondrially encoded subunits of the oxidative phosphorylation (OXPHOS) system that were reported in relation to cold-adaptation. No obvious pattern was found for the diverse sets of mammalian species that either apply daily or multiday torpor or otherwise cope with cold. In summary, our single long-range PCR assay applying a pair of back-to-back primers that target a consensus sequence motif of Vertebrata has potential to amplify (intact) mitochondrial rings present in templates from a taxonomically diverse range of vertebrates. It could be promising for studying novel mitogenomes, mitotypes of a population and mitochondrial heteroplasmy in a sensitive, straightforward and flexible manner.


2021 ◽  
Author(s):  
Jamal Nourinezhad ◽  
Reza Ranjbar ◽  
Vahid Rostamizadeh ◽  
Marzieh Norouzi Tabrizinejad ◽  
Abdulaziz Hallak ◽  
...  

Abstract The branching patterns of the aortic arches of 28 adult male and female Syrian hamsters (SH) were thoroughly examined under a stereomicroscope for the first time by using latex injection and corrosion casting to determine their general arrangements and morphological variations as well as their differences and similarities to other rodents and rabbits. Three major arteries, namely, the brachiocephalic trunk (BC), left common carotid artery (CC) and left subclavian artery (SA), originating from the aortic arch (AR), were uniformly noted in SH. The BC was consistently divided into the right SA and the right CA. SA in SH normally releases the internal thoracic, deep cervical, dorsal scapular, vertebral, superficial cervical and supreme intercostal arteries. The costocervical trunk typically consisted of supreme intercostal and internal thoracic arteries and a common trunk for dorsal scapular and deep cervical arteries. To comprehend the comparative morphology of the pattern of branching of AR more completely, our results were compared with previous studies in rodents and rabbits. (1) The general morphology of the great arteries from AR in SH was similar to that in mole rats, rats, mice, porcupines, and gerbils but was essentially different from that in rabbits, guinea pigs, red squirrels, ground squirrels, pacas and chinchillas. (2) The typical pattern of the branching of the subclavian arteries in SH was similar to that in guinea pigs, rats, and rabbits but was different from that of the reported rodents regardless of the origins of the bronchoesophageal and internal thoracic arteries and the composition of the costocervical trunk.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Caila E. Kucheravy ◽  
Jane M. Waterman ◽  
Elaine A. C. dos Anjos ◽  
James F. Hare ◽  
Chris Enright ◽  
...  

AbstractHibernating ground squirrels rely on a short active period for breeding and mass accrual, and are thus vulnerable to extreme climate events that affect key periods in their annual cycle. Here, we document how a heatwave in March 2012 led to a phenological mismatch between sexes in Richardson’s ground squirrels (Urocitellus richardsonii). Females emerged from hibernation and commenced breeding earlier in 2012 relative to average female emergence. Although males had descended testes and pigmented scrota, it appeared that not all males were physiologically prepared to breed since 58.6% of males had non-motile sperm when breeding commenced. Body condition, relative testes size, and the relative size of accessory glands were significant predictors of sperm motility. Males with non-motile sperm had smaller accessory glands than males with motile sperm. There was no decrease in the number of juveniles that emerged in 2012 or female yearlings recruited in 2013, nor did juveniles emerge later than other years. The impact of this heatwave on male ground squirrels emphasizes the importance of assessing the consequences of climate change on the breeding success of hibernating species in both sexes, since the different sensitivity to external cues for emergence led to a mismatch in timing under this event.


2021 ◽  
Vol 75 (11) ◽  
Author(s):  
Annemarie van der Marel ◽  
Jane M. Waterman ◽  
Marta López-Darias
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document