A modified goodness-of-fit test based on likelihood ratio for the skew-normal distribution

2014 ◽  
Vol 8 ◽  
pp. 3869-3887 ◽  
Author(s):  
Nihan Potas ◽  
Emre E. Sarisoy ◽  
Mahmut Kara
2017 ◽  
Vol 14 (2) ◽  
Author(s):  
Thao Tran ◽  
Cara Wiskow ◽  
Mohammad Aziz

The purpose of this study is to find distributions that best model body mass index (BMI) data. BMI has become a standard health indicator and numerous studies have been done to examine the distribution of BMI. Due to the skew and bimodal nature, we focus on modeling BMI with flexible skewed distributions. The distributions are fitted to University of Wisconsin–Eau Claire (UWEC) BMI data and to a data obtained from National Health and Nutrition Survey (NHANES). The model parameters are obtained using maximum likelihood estimation method. We compare flexible models to more conventional distributions, such as skew-normal, and skew-t distributions using AIC and BIC and Kolmogorov-Smirnov (K-S) goodness-of-fit test. Our results indicate that the skew-t and Alpha-Skew-Laplace distributions are reasonably competitive when describing unimodal BMI data whereas Alpha-Skew-Laplace and finite mixture of scale mixture of skew-normal and skew-t distributions are better alternatives to both unimodal and bimodal conventional distributions. The results we obtained are useful because we believe the models discussed in ours study will offer a framework for testing features such as bimodality, asymmetry, and robustness of the BMI data, thus providing a more detailed and accurate understanding of the distribution of BMI. KEYWORDS: Body Mass Index; Skew-normal distribution; Skew-t distribution; Flexible skewed distributions; Mixture distributions; Scale mixture of skew-normal distribution; K-S test


Author(s):  
Reinaldo B. Arellano-Valle ◽  
Adelchi Azzalini

AbstractFor the family of multivariate probability distributions variously denoted as unified skew-normal, closed skew-normal and other names, a number of properties are already known, but many others are not, even some basic ones. The present contribution aims at filling some of the missing gaps. Specifically, the moments up to the fourth order are obtained, and from here the expressions of the Mardia’s measures of multivariate skewness and kurtosis. Other results concern the property of log-concavity of the distribution, closure with respect to conditioning on intervals, and a possible alternative parameterization.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 815
Author(s):  
Christopher Adcock

A recent paper presents an extension of the skew-normal distribution which is a copula. Under this model, the standardized marginal distributions are standard normal. The copula itself depends on the familiar skewing construction based on the normal distribution function. This paper is concerned with two topics. First, the paper presents a number of extensions of the skew-normal copula. Notably these include a case in which the standardized marginal distributions are Student’s t, with different degrees of freedom allowed for each margin. In this case the skewing function need not be the distribution function for Student’s t, but can depend on certain of the special functions. Secondly, several multivariate versions of the skew-normal copula model are presented. The paper contains several illustrative examples.


2005 ◽  
Vol 19 (3) ◽  
pp. 205-214 ◽  
Author(s):  
G. Mateu-Figueras ◽  
V. Pawlowsky-Glahn ◽  
C. Barceló-Vidal

Sign in / Sign up

Export Citation Format

Share Document