Adaptive fluid-structure interaction simulation of large-scale complex liquid containment with two-phase flow

2012 ◽  
Vol 41 (4) ◽  
pp. 559-573 ◽  
Author(s):  
Sung-Woo Park ◽  
Jin-Rae Cho
2021 ◽  
Vol 35 (6) ◽  
pp. 914-923
Author(s):  
Zhi-wei Wang ◽  
Yan-ping He ◽  
Ming-zhi Li ◽  
Ming Qiu ◽  
Chao Huang ◽  
...  

Author(s):  
J.-H. Jeong ◽  
M. Kim ◽  
P. Hughes

Fluid-structure interaction (FSI) is the interaction of some movable or deformable structure with an internal or surrounding fluid flow. Therefore, fluid-structure interaction problems are too complex to solve analytically and so they have to be analysed by means of experiments or numerical simulation. This paper provides an overview of numerical methods for fluid-structure interaction evaluation in an draft IAEA technical guideline: large eddy simulation (LES), direct numerical simulation (DNS), Lattice-Boltzmann method (LBM), finite element method (FEM) and computational fluid dynamics (CFD) method. In addition to providing general applications of numerical methods for fluid-structure interaction evaluation, the paper also describes some cases applied for problems associated with single-phase flow and two-phase flow in nuclear power plants.


Sign in / Sign up

Export Citation Format

Share Document