scholarly journals Static Closed-Form Solutions for In-Plane Thick Curved Beams with Variable Curvatures

2007 ◽  
Vol 1 (8) ◽  
pp. 1026-1034 ◽  
Author(s):  
Kuan-Chung LIN ◽  
Shi-Hsun HUANG
2017 ◽  
Vol 09 (01) ◽  
pp. 1750006 ◽  
Author(s):  
Yong Zhou ◽  
Timo Nyberg ◽  
Gang Xiong ◽  
Shi Li ◽  
Hongbo Zhou ◽  
...  

In this paper, an analytical method based on Timoshenko theory is derived for obtaining the in-plane static closed-form general solutions of deep curved laminated piezoelectric beams with variable curvatures. The equivalent modulus of elasticity is utilized to take into account the material couplings in the laminated beam. The linear piezoelectric effect is considered to develop the static governing equations. The governing differential equations are formulated as functions of the angle of tangent slope by introducing the coordinate system defined by the arc length of the centroidal axis and the angle of tangent slope. To solve the governing equations, defined are the fundamental geometric properties, such as the moments of the arc length with respect to horizontal and vertical axes. As the radius is known, the fundamental geometric quantities can be calculated to obtain the static closed-form solutions of the axial force, shear force, bending moment, rotation angle, and displacement fields at any cross-section of curved beams. The closed-form solutions of the circle beams covered with piezoelectric layers under various loading cases are presented. The results show the consistency in comparison with finite results. Solutions of the non-dimensional displacements for the laminated circular and spiral curved beams with different lay-ups are available. The non-dimensional displacements with geometry and material parameters are also investigated.


2010 ◽  
Vol E93-B (12) ◽  
pp. 3461-3468 ◽  
Author(s):  
Bing LUO ◽  
Qimei CUI ◽  
Hui WANG ◽  
Xiaofeng TAO ◽  
Ping ZHANG

Sign in / Sign up

Export Citation Format

Share Document