T-3-1-1 Multibody Dynamic Analysis by Time Finite Element

2002 ◽  
Vol 2002 (0) ◽  
pp. 187-192
Author(s):  
Mikihito TANAKA ◽  
Masashi IURA
2011 ◽  
Vol 58-60 ◽  
pp. 1608-1613
Author(s):  
Gang Huang ◽  
Yuan Ming Long ◽  
Jin Hang Li

Virtual prototype plays an important role in agile designing and manufacturing. Finite Element Analysis and multibody analysis software can also assist engineers with developing and analyzing sophisticated machines. In this paper, a virtual model of an automobile wiper is modeled and used to be simulated under virtual environment of ADAMS, which is a famous tool in mechanical engineering. After simulation, the vibration and noise that the wiper works with have been found and some suggestions are given in discussion and conclusion.


2019 ◽  
Vol 45 (3) ◽  
pp. 293-313 ◽  
Author(s):  
Fernando Isaac ◽  
Filipe Marques ◽  
Nuno Dourado ◽  
Paulo Flores

Vibration ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 151-174
Author(s):  
André F. S. Rodrigues ◽  
Zuzana Dimitrovová

In this paper, the three-layer model of ballasted railway track with discrete supports is analyzed to access its applicability. The model is referred as the discrete support model and abbreviated by DSM. For calibration, a 3D finite element (FE) model is created and validated by experiments. Formulas available in the literature are analyzed and new formulas for identifying parameters of the DSM are derived and validated over the range of typical track properties. These formulas are determined by fitting the results of the DSM to the 3D FE model using metaheuristic optimization. In addition, the range of applicability of the DSM is established. The new formulas are presented as a simple computational engineering tool, allowing one to calculate all the data needed for the DSM by adopting the geometrical and basic mechanical properties of the track. It is demonstrated that the currently available formulas have to be adapted to include inertial effects of the dynamically activated part of the foundation and that the contribution of the shear stiffness, being determined by ballast and foundation properties, is essential. Based on this conclusion, all similar models that neglect the shear resistance of the model and inertial properties of the foundation are unable to reproduce the deflection shape of the rail in a general way.


2018 ◽  
Vol 18 (02) ◽  
pp. 1850017 ◽  
Author(s):  
Iwona Adamiec-Wójcik ◽  
Łukasz Drąg ◽  
Stanisław Wojciech

The static and dynamic analysis of slender systems, which in this paper comprise lines and flexible links of manipulators, requires large deformations to be taken into consideration. This paper presents a modification of the rigid finite element method which enables modeling of such systems to include bending, torsional and longitudinal flexibility. In the formulation used, the elements into which the link is divided have seven DOFs. These describe the position of a chosen point, the extension of the element, and its orientation by means of the Euler angles Z[Formula: see text]Y[Formula: see text]X[Formula: see text]. Elements are connected by means of geometrical constraint equations. A compact algorithm for formulating and integrating the equations of motion is given. Models and programs are verified by comparing the results to those obtained by analytical solution and those from the finite element method. Finally, they are used to solve a benchmark problem encountered in nonlinear dynamic analysis of multibody systems.


Sign in / Sign up

Export Citation Format

Share Document