Measurement of the wall shear stress with sublayer plate for three-dimensional flow.

2019 ◽  
Vol 2019.57 (0) ◽  
pp. 509
Author(s):  
Toshiki UEMATSU ◽  
Hiroki SUZUKI ◽  
Shinsuke MOCHIZUKI
1995 ◽  
Vol 28 (12) ◽  
pp. 1459-1469 ◽  
Author(s):  
William F. Pritchard ◽  
Peter F. Davies ◽  
Ziba Derafshi ◽  
Denise C. Polacek ◽  
Raychang Tsao ◽  
...  

Circulation ◽  
2014 ◽  
Vol 129 (6) ◽  
pp. 673-682 ◽  
Author(s):  
Riti Mahadevia ◽  
Alex J. Barker ◽  
Susanne Schnell ◽  
Pegah Entezari ◽  
Preeti Kansal ◽  
...  

2013 ◽  
Vol 72 (2) ◽  
pp. 522-533 ◽  
Author(s):  
Susanne Schnell ◽  
Michael Markl ◽  
Pegah Entezari ◽  
Riti J. Mahadewia ◽  
Edouard Semaan ◽  
...  

Author(s):  
Leonie Rouleau ◽  
Joanna Rossi ◽  
Jean-Claude Tardif ◽  
Rosaire Mongrain ◽  
Richard L. Leask

Endothelial cells (ECs) are believed to respond differentially to hemodynamic forces in the vascular tree. Once atherosclerotic plaque has formed in a vessel, the obstruction creates complex spatial gradients in wall shear stress (WSS). In vitro models have used mostly unrealistic and simplified geometries, which cannot reproduce accurately physiological conditions. The objective of this study was to expose ECs to the complex WSS pattern created by an asymmetric stenosis. Endothelial cells were grown and exposed for different times to physiological steady flows in straight dynamic controls and in idealized asymmetric stenosis models. Cell morphology was noticeably different in the regions with spatial WSS gradients, being more randomly oriented and of cobblestone shape. Inflammatory molecule expression was also altered by exposure to shear and endothelial nitric oxide synthase (eNOS) was upregulated by its presence. A regional response in terms of inflammation was observed through confocal microscopy. This work provides a more realistic model to study endothelial cell response to spatial and temporal WSS gradients that are present in vivo and is an important advancement towards a better understanding of the mechanisms involved in coronary artery disease.


2019 ◽  
Vol 31 (12) ◽  
pp. 121903 ◽  
Author(s):  
Christopher Cox ◽  
Mohammad Reza Najjari ◽  
Michael W. Plesniak

2009 ◽  
Vol 7 (42) ◽  
pp. 91-103 ◽  
Author(s):  
C. Poelma ◽  
K. Van der Heiden ◽  
B. P. Hierck ◽  
R. E. Poelmann ◽  
J. Westerweel

In order to study the role of blood–tissue interaction in the developing chicken embryo heart, detailed information about the haemodynamic forces is needed. In this study, we present the first in vivo measurements of the three-dimensional distribution of wall shear stress (WSS) in the outflow tract (OFT) of an embryonic chicken heart. The data are obtained in a two-step process: first, the three-dimensional flow fields are measured during the cardiac cycle using scanning microscopic particle image velocimetry; second, the location of the wall and the WSS are determined by post-processing flow velocity data (finding velocity gradients at locations where the flow approaches zero). The results are a three-dimensional reconstruction of the geometry, with a spatial resolution of 15–20 µm, and provides detailed information about the WSS in the OFT. The most significant error is the location of the wall, which results in an estimate of the uncertainty in the WSS values of 20 per cent.


Sign in / Sign up

Export Citation Format

Share Document