346 Finite Element Dynamic Response Analysis of a String with Time-varying Length

2003 ◽  
Vol 2003 (0) ◽  
pp. _346-1_-_346-5_
Author(s):  
Yoshio HASHIMOTO
2018 ◽  
Vol 764 ◽  
pp. 391-398
Author(s):  
Xing Han ◽  
Lian Jin Li

Due to the influence of rolling force fluctuations, tube size changes and material uniformity and other factors, vibration and other phenomenon inevitably occur in the rolling process of tandem rolling mill. This vibration has a great impact on the dynamic stability of the mill and rolling reduction, and will significantly reduce the dimensional accuracy and surface quality of seamless steel pipe. In this paper, the non-linear finite element software ABAQUS is used to simulate the rolling process of seamless steel pipe. First, rolling force of the first frame with the maximum rolling force of PQF rolling mill is calculated. The reliability of rolling force calculated by the finite element method is verified by the test experiment. The dynamic response analysis of the roll is carried out to obtain the dynamic response curve of the roll in the rolling state and to provide technical support for the rolling schedule with the calculated rolling force being the load.


2019 ◽  
Vol 11 (04) ◽  
pp. 1950035
Author(s):  
Tuanjie Li ◽  
Hangjia Dong ◽  
Xi Zhao ◽  
Yaqiong Tang

Dynamic response analysis plays an important role for the structural design. For engineering structures, there exist model inaccuracies and structural parameters uncertainties. Consequently, it is necessary to express these uncertain parameters as interval variables and introduce the interval finite element method (IFEM), in which the elements in stiffness matrix, mass matrix and damping matrix are all the function of interval parameters. The dependence of interval parameters leads to overestimation of dynamic response analysis. In order to reduce the overestimation of IFEM, the element-based subinterval perturbation for static analysis is applied to dynamic response analysis. According to the interval range, the interval parameters are divided into different subintervals. With permutation and combination of each subinterval, the upper and lower bounds of displacement response are obtained. Because of the large number of degrees of freedom and uncertain parameters, the Laplace transform is used to evaluate the dynamic response for avoiding to frequently solve the interval finite element linear equations. The numerical examples illustrate the validity and feasibility of the proposed method.


2000 ◽  
Vol 7 (1) ◽  
pp. 39-56 ◽  
Author(s):  
Jaroslav Mackerle

This bibliography lists references to papers, conference proceedings, and theses/dissertations dealing with finite element vibration and dynamic response analysis of engineering structures that were published from 1994 to 1998. It contains 539 citations. The following types of structures are included: basic structural systems; ground structures; ocean and coastal structures; mobile structures; and containment structures.


2012 ◽  
Vol 450-451 ◽  
pp. 1257-1260
Author(s):  
Qiang Gao ◽  
Chao Ren ◽  
Yang Xu ◽  
Zhen Yao Liu

To study the effects of tornado on long span transmission tower, a model of the tower is built and the features of the tornado are considered. Three different wind cases are discussed in dynamic analysis with finite element method. The analysis results show that dynamic response is more significant at 45° wind direction.


Sign in / Sign up

Export Citation Format

Share Document