515 A Load Combination Method for Seismic Response Analysis of Multiple Piping Systems with Friction Characteristics

2011 ◽  
Vol 2011 (0) ◽  
pp. _515-1_-_515-10_
Author(s):  
Tatsuya YAMAUCHI ◽  
Atsushi YOKOTA ◽  
Arata MASUDA ◽  
Akira SONE
Author(s):  
Tatsuya Yamauchi ◽  
Kazumasa Tsuchikawa ◽  
Arata Masuda ◽  
Akira Sone

A load combination method for seismic response calculation of piping systems with friction characteristics to multiple support excitations is presented. This method has an advantage, such that the cross-correlation among support excitations and “response reduction factor” due to friction are taken into account by use of a stationary random vibration theory approach. Using a simple analytical SDOF piping system with friction characteristics to two support excitations, This method is supplied to various correlation cases of two support excitations and friction characteristics and the maximum responses of piping is calculated. From these calculation results, it is clear that the maximum acceleration responses of nonlinear piping systems can also depend on the cross-correlation among support excitations and can be reduced due to the friction effect. Finally, the conventional equation of the response reduction factor and the maximum response calculated by the proposed method are presented for practical use.


Author(s):  
Akira Sone ◽  
Tatsuya Yamauchi ◽  
Arata Masuda

A load combination scheme for seismic response calculation of multi-degree-of-freedom (MDOF) piping systems with friction characteristics to multiple support excitations is presented. This scheme has an advantage, such that the “response reduction factor” due to friction is taken into account by use of a stationary random vibration theory approach. Using a simple and analytical 5DOF piping system with friction characteristics to two support excitations, combination law is supplied to various friction characteristics and the maximum responses of piping is calculated. From these calculation results, it is clear that the maximum acceleration responses of piping systems calculated by the proposed scheme are reasonable compared with those by the numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document