2313 Regaining Productivity Through Line Balancing : A Case Study in an Electrical Manual Assembly Line

2014 ◽  
Vol 2014.24 (0) ◽  
pp. _2313-1_-_2313-6_
Author(s):  
Adi SAPTARI ◽  
Jia Xin LEAU ◽  
Nor Akramin MOHAMAD ◽  
Effendi MOHAMAD
Author(s):  
George Pintzos ◽  
Markos Matsas ◽  
Christos Triantafyllou ◽  
Nikolaos Papakostas ◽  
George Chryssolouris

Manual assembly planning methodologies have been in the center of industrial and academic research for many decades, since the manual assembly costs may often account for even half of the total manufacturing expenses. The existing and emerging manufacturing trends, such as mass customization and personalization, require fast responses when it comes to the conception and realization of the relevant manufacturing systems. Even though, work methodologies, such as concurrent engineering, have been proposed and applied, gaps still exist among product development, configuration and manufacturing. The Current Product Lifecycle (PLM) systems focus on the coordination of activities among engineers of different disciplines. However, they are unable to provide actual decision support functionality to decision makers. Moreover, solutions for the different phases of assembly planning have been proposed, without nevertheless taking into account the holistic nature of assembly planning that spans the different engineering phases. The study presented in this paper is based on a methodology that integrates three distinct steps, regarding assembly planning; the generation of assembly related information, from the Computer Aided Design (CAD) files of an assembly, the calculation of the relevant process times from functions, generated through empirical measurements and the assembly line balancing of a line, based on the information gathered. The innovative aspect of this approach relies on the advancement of the relevant technologies as well as on their integration into a common working practice. The methodology enables the estimation of production related values in the later phases of product design or in the early phases of manufacturing planning. The generation of assembly precedence diagrams is made in an automatic way through the extraction of information on collision detection and the parts’ relations. This application is developed in the form of an add-on to a commercial CAD software suite. It utilizes features that are available in a wide range of such systems. The second step relies on the identification of specific features of parts, such as dimensions and mass. This information is then used as input in the functions already proposed in the academic literature for the estimation of the relevant process times for each part. Finally, the assembly line balancing is performed through the generation of the precedence diagram and the estimated process times, via a web-based service, which makes use of advanced optimization techniques. In order for this methodology to be evaluated, a case study is presented by using the CAD file of an automotive sub-assembly. The case study demonstrates each step separately, beginning with the generation of the precedence diagram down to the balancing of the assembly line.


2015 ◽  
Vol 789-790 ◽  
pp. 1240-1244
Author(s):  
Peeyapach Jitchaiyaphum ◽  
Suksan Prombanpong

The purpose of this paper is to demonstrate a productivity improvement through waste reduction and line balancing. One of the obstacles of a manual assembly line nowadays is an awkward line design with over manpower, a lot of wastes, and low balance efficiency. As a result, the production line may not satisfy customer demand and ends up with low production line efficiency. This is due to the fact that this type of production line is operated by human and the customer demand or requirements are frequently fluctuated. Human workers are prone to make mistakes, inefficient, and unorganized. Thus, the major causes of production line down time are discussed with suggestion of remedy actions to improve the productivity. In addition, calculation of line balancing is demonstrated. One of the actual manual assembly lines will be used as a case study. It is found that after improvement line balance efficiency is increased from 46.49 to 86.66 percent with the productivity improvement of 159 percent.


2015 ◽  
Vol 778 ◽  
pp. 240-244
Author(s):  
Ketsada Khamwiset ◽  
Suksan Prombanpong

The purpose of this paper is to demonstrate an efficiency improvement of assembly line by through line balancing method. By reducing lost time in assembly line caused working time each station does not equal. There was a wait time between work stations. As a result, the effectiveness and efficiency of the assembly line low. Will be affected the delivery of product to customers is not enough or back order. In addition, calculation of line balancing is demonstrated. One of the actual manual assembly lines will be through as a case study. It is found that after improvement line balance efficiency is increased from 63.62 to 89.52 percent with the efficiency improvement of 25.9 percent.


2019 ◽  
Vol 37 (2) ◽  
pp. 638-663
Author(s):  
Mohd Fadzil Faisae Ab. Rashid ◽  
Ahmad Nasser Mohd Rose ◽  
Nik Mohd Zuki Nik Mohamed ◽  
Fadhlur Rahman Mohd Romlay

Purpose This paper aims to propose an improved Moth Flame Optimization (I-MFO) algorithm to optimize the cost-oriented two-sided assembly line balancing (2S-ALB). Prior to the decision to assemble a new product, the manufacturer will carefully study and optimize the related cost to set up and run the assembly line. For the first time in ALB, the power cost is modeled together with the equipment, set up and labor costs. Design/methodology/approach I-MFO was proposed by introducing a global reference flame mechanism to guide the global search direction. A set of benchmark problems was used to test the I-MFO performance. Apart from the benchmark problems, a case study from a body shop assembly was also presented. Findings The computational experiment indicated that the I-MFO obtained promising results compared to comparison algorithms, which included the particle swarm optimization, Cuckoo Search and ant colony optimization. Meanwhile, the results from the case study showed that the proposed cost-oriented 2S-ALB model was able to assist the manufacturer in making better decisions for different planning periods. Originality/value The main contribution of this work is the global reference flame mechanism for MFO algorithm. Furthermore, this research introduced a new cost-oriented model that considered power consumption in the assembly line design.


Author(s):  
Low Shye Nee ◽  
Goh Wen Juin ◽  
Fow Jun Yan ◽  
Chan Yee Theng ◽  
S. Kamaruddin

2015 ◽  
Vol 761 ◽  
pp. 104-108
Author(s):  
Adi Saptari ◽  
Jia Xin Leau ◽  
M. Nor Akramin

In Line Balancing principles, the total workload in the assembly process is divided as evenly as possible among the workstations, without violating the sequences and relations in the assembly operations. Line balancing is important in an assembly system as it balances the line and increases the efficiency, as well as the productivity of a system. A case study was conducted in the assembly line of an electrical accessories manufacturer in Malaysia. The cycle time for each station was recorded, and the standard cycle time was estimated. The productivity, as well as the efficiency of the current assembly line, were studied. In terms of the productivity, the performance of the current systems was 500 units/worker/day, while the expected productivity was 600 units/worker/day. An assembly line setting was proposed based on the Line Balancing Method; the productivity for the proposed line increased to 671 units/worker/day, or in rough additional increase around 34%.


1974 ◽  
Vol 53 (9) ◽  
pp. 321 ◽  
Author(s):  
Geoff Buxey ◽  
Martin Burke

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ashish Yadav ◽  
Shashank Kumar ◽  
Sunil Agrawal

PurposeMulti-manned assembly lines are designed to produce large-sized products, such as automobiles. In this paper, a multi-manned assembly line balancing problem (MALBP) is addressed in which a group of workers simultaneously performs different tasks on a workstation. The key idea in this work is to improve the workstation efficiency and worker efficiency of an automobile plant by minimizing the number of workstations, the number of workers, and the cycle time of the MALBP.Design/methodology/approachA mixed-integer programming formulation for the problem is proposed. The proposed model is solved with benchmark test problems mentioned in research papers. The automobile case study problem is solved in three steps. In the first step, the authors find the task time of all major tasks. The problem is solved in the second step with the objective of minimizing the cycle time for the sub-tasks and major tasks, respectively. In the third step, the output results obtained from the second step are used to minimize the number of workstations using Lingo 16 solver.FindingsThe experimental results of the automobile case study show that there is a large improvement in workstation efficiency and worker efficiency of the plant in terms of reduction in the number of workstations and workers; the number of workstations reduced by 24% with a cycle time of 240 s. The reduced number of workstations led to a reduction in the number of workers (32% reduction) working on that assembly line.Practical implicationsFor assembly line practitioners, the results of the study can be beneficial where the manufacturer is required to increased workstation efficiency and worker efficiency and reduce resource requirement and save space for assembling the products.Originality/valueThis paper is the first to apply a multi-manned assembly line balancing approach in real life problem by considering the case study of an automobile plant.


Sign in / Sign up

Export Citation Format

Share Document