traction force microscopy
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 60)

H-INDEX

23
(FIVE YEARS 4)

Author(s):  
Kevin M. Beussman ◽  
Molly Y. Mollica ◽  
Andrea Leonard ◽  
Jeffrey Miles ◽  
John Hocter ◽  
...  

Author(s):  
Steven Huth ◽  
Johannes W. Blumberg ◽  
Dimitri Probst ◽  
Jan Lammerding ◽  
Ulrich S. Schwarz ◽  
...  

AbstractMammalian cells have evolved complex mechanical connections to their microenvironment, including focal adhesion clusters that physically connect the cytoskeleton and the extracellular matrix. This mechanical link is also part of the cellular machinery to transduce, sense and respond to external forces. Although methods to measure cell attachment and cellular traction forces are well established, these are not capable of quantifying force transmission through the cell body to adhesion sites. We here present a novel approach to quantify intracellular force transmission by combining microneedle shearing at the apical cell surface with traction force microscopy at the basal cell surface. The change of traction forces exerted by fibroblasts to underlying polyacrylamide substrates as a response to a known shear force exerted with a calibrated microneedle reveals that cells redistribute forces dynamically under external shearing and during sequential rupture of their adhesion sites. Our quantitative results demonstrate a transition from dipolar to monopolar traction patterns, an inhomogeneous distribution of the external shear force to the adhesion sites as well as dynamical changes in force loading prior to and after the rupture of single adhesion sites. Our strategy of combining traction force microscopy with external force application opens new perspectives for future studies of force transmission and mechanotransduction in cells.


2021 ◽  
Vol 32 (18) ◽  
pp. 1737-1748
Author(s):  
Somanna Kollimada ◽  
Fabrice Senger ◽  
Timothée Vignaud ◽  
Manuel Théry ◽  
Laurent Blanchoin ◽  
...  

The endogenous content of proteins associated with force production and the resultant traction forces were quantified in the same cells using a new traction force-microscopy assay. Focal adhesion size correlated with force in stationary cells. Relative numbers of motors and cross-linkers per actin required an optimum to maximize cell force production.


Micron ◽  
2021 ◽  
pp. 103138
Author(s):  
Małgorzata Lekka ◽  
Kajangi Gnanachandran ◽  
Andrzej Kubiak ◽  
Tomasz Zieliński ◽  
Joanna Zemła

SoftwareX ◽  
2021 ◽  
Vol 15 ◽  
pp. 100723
Author(s):  
Jorge Barrasa-Fano ◽  
Apeksha Shapeti ◽  
Álvaro Jorge-Peñas ◽  
Mojtaba Barzegari ◽  
José Antonio Sanz-Herrera ◽  
...  

2021 ◽  
Vol 17 (6) ◽  
pp. e1008364
Author(s):  
Andreas Bauer ◽  
Magdalena Prechová ◽  
Lena Fischer ◽  
Ingo Thievessen ◽  
Martin Gregor ◽  
...  

Cellular force generation and force transmission are of fundamental importance for numerous biological processes and can be studied with the methods of Traction Force Microscopy (TFM) and Monolayer Stress Microscopy. Traction Force Microscopy and Monolayer Stress Microscopy solve the inverse problem of reconstructing cell-matrix tractions and inter- and intra-cellular stresses from the measured cell force-induced deformations of an adhesive substrate with known elasticity. Although several laboratories have developed software for Traction Force Microscopy and Monolayer Stress Microscopy computations, there is currently no software package available that allows non-expert users to perform a full evaluation of such experiments. Here we present pyTFM, a tool to perform Traction Force Microscopy and Monolayer Stress Microscopy on cell patches and cell layers grown in a 2-dimensional environment. pyTFM was optimized for ease-of-use; it is open-source and well documented (hosted at https://pytfm.readthedocs.io/) including usage examples and explanations of the theoretical background. pyTFM can be used as a standalone Python package or as an add-on to the image annotation tool ClickPoints. In combination with the ClickPoints environment, pyTFM allows the user to set all necessary analysis parameters, select regions of interest, examine the input data and intermediary results, and calculate a wide range of parameters describing forces, stresses, and their distribution. In this work, we also thoroughly analyze the accuracy and performance of the Traction Force Microscopy and Monolayer Stress Microscopy algorithms of pyTFM using synthetic and experimental data from epithelial cell patches.


2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Hadley Witt ◽  
Zicheng Yan ◽  
David Henann ◽  
Lauren Hazlett ◽  
Christian Franck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document