scholarly journals G303 Brownian Dynamics Simulations of Colloidal Dispersion composed of Ferromagnetic Spherocylinder Particles in a Simple Shear Flow : 1st Report, For the case of Simple Shear Flow in a Magnetic Field Perpendicular to a Shearing Plane

2009 ◽  
Vol 2009 (0) ◽  
pp. 557-558
Author(s):  
Ryo HAYASAKA ◽  
Akira SATOH
Author(s):  
Ryo Hayasaka ◽  
Yasuhiro Sakuda ◽  
Akira Satoh

We have investigated aggregate structures and rheological properties of a colloidal dispersion composed of ferromagnetic spherocylinder particles with a magnetic moment along the particle axis direction, by means of Brownian dynamics simulations. In concrete, we have attempted to clarify the influences of the flow field, magnetic field strength, magnetic interactions between particles and volumetric fraction of particles. In order to discuss quantitatively the internal structures of clusters, we have concentrated our attention on the radial distribution and orientational distribution functions. The present results are compared with those of the theoretical analysis for dilute dispersions and also non-dilute dispersions; the results for the latter were obtained by means of the mean-field approximation, which magnetic particle-particle interactions can be taken into account. Some important results are summarized as follows. For the case of the magnetic field strength and magnetic interactions between particles are more dominant than the viscous forces due to a simple shear flow, chain-like like clusters are formed along the magnetic field direction, although they are slightly tilted to the flow direction. When magnetic particle-particle interactions become over a certain value, such cluster formation leads to a significant increase in the viscosity of the dispersion.


Soft Matter ◽  
2022 ◽  
Author(s):  
Kevin S. Silmore ◽  
Michael Strano ◽  
James W. Swan

We perform Brownian dynamics simulations of semiflexible colloidal sheets with hydrodynamic interactions and thermal fluctuations in shear flow. As a function of the ratio of bending rigidity to shear energy...


Author(s):  
Yasuhiro Sakuda ◽  
Akira Satoh

We have investigated the negative viscosity of a colloidal dispersion composed of ferromagnetic rod-like particles, which have a magnetic moment normal to the particle axis. A simple shear flow problem has been treated to clarify the particle orientational distribution and rheological properties of such a semi-dense dispersion, under circumstances of an external magnetic field applied in the direction normal to the shear plane of a simple shear flow. The results obtained here are summarized as follows. For the cases of a very strong magnetic field and magnetic interactions between particles, the magnetic moment of the rodlike particles is significantly restricted in the magnetic field direction, so that the particle approximately aligns in the shear flow direction. Also, the particle can easily rotate around the axis of the cluster almost freely even in a simple shear flow. Characteristic orientational properties of the particle cause negative viscosity, as in the previous study for a dilute dispersion. However, magnetic particle-particle interactions have a function to make such negative viscosity decrease.


Author(s):  
Ryo Hayasaka ◽  
Akira Satoh

We have investigated sedimentation phenomena of a colloidal dispersion composed of ferromagnetic spherical particles in the gravity field, by means of Brownian dynamics simulations. In concrete, we have attempted to clarify the influences of the magnetic field strength, magnetic interactions between particles and volumetric fraction of particles on sedimentation phenomena of such magnetic particles. In order to discuss quantitatively the sedimentation process and the internal structures of particle aggregates after the sedimentation, we have concentrated our attention on the local radial distribution function of each layer. The main results obtained here are summarized as follows. For the case of a weak magnetic field and a weak magnetic force between particles, layered structures are formed. As the magnetic field increases, clusters are formed in upright formation along the gravity or the magnetic field direction. As magnetic particle-particle interactions increase, particles combine with each other to form aggregate in other directions, and new types of clusters are formed in the bottom area. In this situation, therefore, the upright-standing clusters come to disappear. For a dilute case, relatively small clusters are formed apart from each other in almost equal space. As the volumetric fraction increases from such a situation, clusters with voids in the center area of the clusters come to be observed, but such formation disappears and layered structures are formed with further increasing the volumetric fraction.


Sign in / Sign up

Export Citation Format

Share Document