colloidal dispersions
Recently Published Documents


TOTAL DOCUMENTS

1066
(FIVE YEARS 108)

H-INDEX

78
(FIVE YEARS 6)

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 199
Author(s):  
Lídia Ballell-Hosa ◽  
Elisabet González-Mira ◽  
Hector Santana ◽  
Judit Morla-Folch ◽  
Marc Moreno-Masip ◽  
...  

Topical delivery has received great attention due to its localized drug delivery, its patient compliance, and its low risk for side effects. Recent developments have focused on studying new drug delivery systems as a strategy for addressing the challenges of current topical treatments. Here we describe the advances on an innovative drug delivery platform called DELOS nanovesicles for topical drug delivery. Previously, the production of DELOS nanovesicles demonstrated potentiality for the topical treatment of complex wounds, achieving well-tolerated liquid dispersions by this route. Here, research efforts have been focused on designing these nanocarriers with the best skin tolerability to be applied even to damaged skin, and on exploring the feasibility of adapting the colloidal dispersions to a more suitable dosage form for topical application. Accordingly, these drug delivery systems have been efficiently evolved to a hydrogel using MethocelTM K4M, presenting proper stability and rheological properties. Further, the integrity of these nanocarriers when being gellified has been confirmed by cryo-transmission electron microscopy and by Förster resonance energy transfer analysis with fluorescent-labeled DELOS nanovesicles, which is a crucial characterization not widely reported in the literature. Additionally, in vitro experiments have shown that recombinant human Epidermal Growth Factor (rhEGF) protein integrated into gellified DELOS nanovesicles exhibits an enhanced bioactivity compared to the liquid form. Therefore, these studies suggest that such a drug delivery system is maintained unaltered when hydrogellified, becoming the DELOS nanovesicles-based hydrogels, an advanced formulation for topical use.


2022 ◽  
Vol 13 ◽  
pp. 10-53
Author(s):  
Anastasiya Sergievskaya ◽  
Adrien Chauvin ◽  
Stephanos Konstantinidis

Sputter deposition of atoms onto liquid substrates aims at producing colloidal dispersions of small monodisperse ultrapure nanoparticles (NPs). Since sputtering onto liquids combines the advantages of the physical vapor deposition technique and classical colloidal synthesis, the review contains chapters explaining the basics of (magnetron) sputter deposition and the formation of NPs in solution. This review article covers more than 132 papers published on this topic from 1996 to September 2021 and aims at providing a critical analysis of most of the reported data; we will address the influence of the sputtering parameters (sputter power, current, voltage, sputter time, working gas pressure, and the type of sputtering plasma) and host liquid properties (composition, temperature, viscosity, and surface tension) on the NP formation as well as a detailed overview of the properties and applications of the produced NPs.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3437
Author(s):  
Frederico Duarte ◽  
Cristián Cuerva ◽  
Carlos Fernández-Lodeiro ◽  
Javier Fernández-Lodeiro ◽  
Raquel Jiménez ◽  
...  

Polymer nanoparticles doped with fluorescent molecules are widely applied for biological assays, local temperature measurements, and other bioimaging applications, overcoming several critical drawbacks, such as dye toxicity, increased water solubility, and allowing imaging of dyes/drug delivery in water. In this work, some polymethylmethacrylate (PMMA), polyvinylpyrrolidone (PVP) and poly(styrene-butadiene-styrene) (SBS) based micro and nanoparticles with an average size of about 200 nm and encapsulating B(III) compounds have been prepared via the reprecipitation method by using tetrahydrofuran as the oil phase and water. The compounds are highly hydrophobic, but their encapsulation into a polymer matrix allows obtaining stable colloidal dispersions in water (3.39 µM) that maintain the photophysical behavior of these dyes. Although thermally activated non-radiative processes occur by increasing temperature from 25 to 80 °C, the colloidal suspension of the B(III) particles continues to emit greenish light (λ = 509 nm) at high temperatures. When samples are cooling back to room temperature, the emission is restored, being reversible. A probe of concept drug delivery study was conducted using coumarin 6 as a prototype of a hydrophobic drug.


2021 ◽  
Vol 104 (6) ◽  
Author(s):  
Javier A. S. Gallegos ◽  
Román Perdomo-Pérez ◽  
Néstor Enrique Valadez-Pérez ◽  
Ramón Castañeda-Priego

Author(s):  
Maryam Al-Ghezi ◽  
Raghad F. Almilly ◽  
Wedad K. Ali

Background and Objective: Glibenclamide (GB) is showing promising results in central nervous system (CNS) injuries treatment where intravenous administration of GB could overcome the oral limitations and assure maximum bioavailability. Dry powder of GB nanoparticles reconstituted for parenteral administration was prepared through electrospraying. Methods: The drug was incorporated with two polymers, polyvinylpyrrolidone (PVP) and Soluplus® (SP), at ratios 1:4 and 1:2 (GB/polymer). Different solvent mixtures were used to formulate the particles. Physicochemical characteristics were investigated. Results: The size of the GB-PVP nanoparticle ranged between (409-775) nm with a spherical, disk, fractured and, agglomerated morphology, while those of the GB-SP nanomicelles were of (447-785) nm with mostly irregular morphology, in consequence to the used solvents mixtures. The high encapsulation efficiency ≥ 98% reflects the well dispersed drug molecules within the polymer matrix, further confirmed by X-ray diffraction and infrared spectroscopy. GB-SP colloidal dispersions showed neutral zeta potentials with a cloud point of 36 ˚C, indicating prolonged circulation time and stability after parenteral administration. GB/SP nanomicelles at ratio 1:4 showed a sustained drug release reaching ≥ 94% in 36 hours. Conclusion: The GB-SP nanomicelles with extended drug release and regarding physicochemical properties represent a remarkable drug delivery system for parenteral administration.


Cellulose ◽  
2021 ◽  
Author(s):  
Jingwen Xia ◽  
Alistair W. T. King ◽  
Ilkka Kilpeläinen ◽  
Vladimir Aseyev

Abstract Cellulose is an historical polymer, for which its processing possibilities have been limited by the absence of a melting point and insolubility in all non-derivatizing molecular solvents. More recently, ionic liquids (ILs) have been used for cellulose dissolution and regeneration, for example, in the development of textile fiber spinning processes. In some cases, organic electrolyte solutions (OESs), that are binary mixtures of an ionic liquid and a polar aprotic co-solvent, can show even better technical dissolution capacities for cellulose than the pure ILs. Herein we use OESs consisting of two tetraalkylphosphonium acetate ILs and dimethyl sulfoxide or γ-valerolactone, as co-solvents. Cellulose can be first dissolved in these OESs at 120 °C and then regenerated, upon cooling, leading to micro and macro phase-separation. This phenomenon much resembles the upper-critical solution temperature (UCST) type thermodynamic transition. This observed UCST-like behavior of these systems allows for the controlled regeneration of cellulose into colloidal dispersions of spherical microscale particles (spherulites), with highly ordered shape and size. While this phenomenon has been reported for other IL and NMMO-based systems, the mechanisms and phase-behavior have not been well defined. The particles are obtained below the phase-separation temperature as a result of controlled multi-molecular association. The regeneration process is a consequence of multi-parameter interdependence, where the polymer characteristics, OES composition, temperature, cooling rate and time all play their roles. The influence of the experimental conditions, cellulose concentration and the effect of time on regeneration of cellulose in the form of preferential gel or particles is discussed. Graphical abstract Regular micro-sized particles regenerated from a cellulose-OES mixture of tetrabutylphosphonium acetate:DMSO (70:30 w/w) upon cooling


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5749
Author(s):  
Evdokia K. Oikonomou ◽  
Jean-François Berret

Fabric conditioners are household products used to impart softness and fragrance to textiles. They are colloidal dispersions of cationic double chain surfactants that self-assemble in vesicles. These surfactants are primarily derived from palm oil chemical modification. Reducing the content of these surfactants allows to obtain products with lower environmental impact. Such a reduction, without adverse effects on the characteristics of the softener and its performance, can be achieved by adding hydrophilic biopolymers. Here, we review the role of guar biopolymers modified with cationic or hydroxyl-propyl groups, on the physicochemical properties of the formulation. Electronic and optical microscopy, dynamic light scattering, X-ray scattering and rheology of vesicles dispersion in the absence and presence of guar biopolymers are analyzed. Finally, the deposition of the new formulation on cotton fabrics is examined through scanning electron microscopy and a new protocol based on fluorescent microscopy. With this methodology, it is possible to quantify the deposition of surfactants on cotton fibers. The results show that the approach followed here can facilitate the design of sustainable home-care products.


Sign in / Sign up

Export Citation Format

Share Document