1214 Double diffusive convection during the unsteady solidification process around a vertical cylinder

2013 ◽  
Vol 2013.50 (0) ◽  
pp. 121401-121402
Author(s):  
Hiroyasu MIYAKAWA ◽  
Shigeo KIMURA ◽  
Takahiro KIWATA ◽  
Nobuyoshi KOMATU ◽  
Takaaki KONO
2008 ◽  
Author(s):  
Bofeng Bai ◽  
Jun Lu ◽  
Lei Zhang ◽  
Heng Li

In order to reveal the law of double-diffusive convection of multi-compound solution in cylindrical cavity, experimental study on solidification of NH4Cl-H2O hypereutectic solution has been performed by using particle image velocimetry (PIV). The influencing factors of flow patterns and intensity are also analyzed. The results show that: 1) There are two approximately symmetric main convection cells in the liquid which are down along the sidewall and up along the center of the cylindrical cavity. Meanwhile, there are also two secondary cells on the bottom corner of cylindrical cavity, which flow in contrary direction to that of the main ones; 2) Due to the release of water during the solidification process, solute layers and diffusive interface are developed in the liquid and will be disappeared in the end; 3) The cooling temperature and the initial concentration have significantly effects on the flow velocity, solute layers and diffusive interface.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
D. A. Nield ◽  
A. V. Kuznetsov

The effect of vertical throughflow on the onset of convection, induced by an applied vertical temperature gradient in a vertical cylinder is studied analytically using linear stability theory. This problem is important to hydrologists to investigate under what conditions convection is taking place in a well or borehole. The effect of double diffusion is included. Both nonoscillatory and oscillatory situations are studied.


Author(s):  
Pierre Dupont ◽  
O. Gorieu ◽  
Hassan Peerhossaini ◽  
M. Kestoras

Sign in / Sign up

Export Citation Format

Share Document