heterogeneous porous medium
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 18)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Vol 2099 (1) ◽  
pp. 012010
Author(s):  
Yu Laevsky ◽  
T Nosova

Abstract The processes of filtration gas combustion in heterogeneous porous medium is studying. The presence of two opposite modes of front propagation made it possible to stabilize the combustion front in a composite porous medium with piecewise constant porosity. A feature of this study is the presentation of the original model not in the traditional form of a system of parabolic equations, but in the form of integral conservation laws in terms of the temperature of the porous medium, the total gas enthalpy, and the mass of gas mixture, and the fluxes corresponding to these functions.


2021 ◽  
Author(s):  
El Ouadefli Lahcen ◽  
El Akkad Abdeslam ◽  
El Moutea Omar ◽  
Elkhalfi Ahmed ◽  
Chaker Hamza

Author(s):  
B. A. Suleimanov ◽  
S. J. Rzayeva ◽  
U. T. Akhmedova

Microbial enhanced oil recovery is considered to be one of the most promising methods of stimulating formation, contributing to a higher level of oil production from long-term fields. The injection of bioreagents into a reservoir results in the creation of oil-displacing agents along with a significant amount of gases, mainly carbon dioxide. Earlier, the authors failed to study the preparation of self-gasified biosystems and the implementation of the subcritical region (SR) under reservoir conditions. Gasified systems in the subcritical phase have better oil-displacing properties than nongasified systems. In a heterogeneous porous medium, the filtration profile of gasified liquids in the SR should be more uniform than for a degassed liquid. Based on experimental studies, the superior efficiency of oil displacement by gasified biosystems compared with degassed ones has been demonstrated. The possibility of efficient use of gasified hybrid biopolymer systems has been shown.


2021 ◽  
Vol 10 (1) ◽  
pp. 483-496
Author(s):  
D.A. Shah ◽  
A.K. Parikh

Present study explores the Fingering (Instability) phenomenon's mathematical model that ensues during the process of secondary oil recovery where two not miscible fluids (water and oil) flow within a heterogeneous porous medium as water is injected vertically downwards. Variational iteration method with proper initial and boundary conditions is being used to determine approximate analytic solution for governing nonlinear second order partial differential equation. Whereas MATLAB is applied to acquire the solution's numerical findings and graphical representations.


Sign in / Sign up

Export Citation Format

Share Document