B205 DISTRIBUTION OF VOID FRACTION AND HEAT TRANSFER COEFFICIENT AROUND VERTICAL TUBE BANKS IN FLUIDIZED BED

Author(s):  
Shuji FURUI ◽  
Masakazu TSUZUKI ◽  
Hisashi UMEKAWA ◽  
Mamoru OZAWA ◽  
Nobuyuki TAKENAKA
2021 ◽  
Author(s):  
Dechao Liu ◽  
Shulei Li ◽  
Gongnan Xie ◽  
Youqian Chen

Abstract In order to explore the fluid flow and heat transfer features of supercritical fluids used in Brayton cycle for waste-heat utilization of marine gas turbines, the effects of ocean rolling motion on thermo-fluidic characteristics of supercritical carbon dioxide (SCO2) in a circular tube are computationally investigated based on a verified turbulence model. It can be found that at a given rolling period, compared to that under static condition, the time-averaged heat transfer capacity is improved by 7.9%, but the onset of the heat transfer recovery is delayed so that the range of the heat transfer deterioration becomes widened. Under the action of the inertial forces, the heat exchange between cooler/denser and warmer/lighter fluids is enhanced, a secondary circulation formed at t/tc = 0.325 and the maximum improvement of section-averaged heat transfer coefficient is 71% at this time. For various periods, the variation trend of time-averaged heat transfer coefficient for SCO2 shows a parabolic, which is distinguishing from conventional fluids. A polarization phenomenon for instantaneous thermal performance can be observed under severe rolling. With rise of the layout height, the time-average heat transfer performance of tube increases monotonously, and the maximum increment is 10.64% in study range.


2019 ◽  
Vol 141 (2) ◽  
Author(s):  
Clifford K. Ho ◽  
Matthew Carlson ◽  
Kevin J. Albrecht ◽  
Zhiwen Ma ◽  
Sheldon Jeter ◽  
...  

This paper presents an evaluation of alternative particle heat-exchanger designs, including moving packed-bed and fluidized-bed designs, for high-temperature heating of a solar-driven supercritical CO2 (sCO2) Brayton power cycle. The design requirements for high pressure (≥20 MPa) and high temperature (≥700 °C) operation associated with sCO2 posed several challenges requiring high-strength materials for piping and/or diffusion bonding for plates. Designs from several vendors for a 100 kW-thermal particle-to-sCO2 heat exchanger were evaluated as part of this project. Cost, heat-transfer coefficient, structural reliability, manufacturability, parasitics and heat losses, scalability, compatibility, erosion and corrosion, transient operation, and inspection ease were considered in the evaluation. An analytic hierarchy process was used to weight and compare the criteria for the different design options. The fluidized-bed design fared the best on heat transfer coefficient, structural reliability, scalability, and inspection ease, while the moving packed-bed designs fared the best on cost, parasitics and heat losses, manufacturability, compatibility, erosion and corrosion, and transient operation. A 100 kWt shell-and-plate design was ultimately selected for construction and integration with Sandia's falling particle receiver system.


Sign in / Sign up

Export Citation Format

Share Document