Integrated Solar Combined Cycle (ISCC) Utilizing Cleanly and Efficiently Unlimited Solar Thermal Energy

2009 ◽  
Vol 112 (1085) ◽  
pp. 270-273
Author(s):  
Hideaki OTA
Author(s):  
Craig S. Turchi ◽  
Nicholas Langle ◽  
Robin Bedilion ◽  
Cara Libby

Concentrating Solar Power (CSP) systems utilize solar thermal energy for the generation of electric power. This attribute makes it relatively easy to integrate CSP systems with fossil-fired power plants. The “solar-augment” of fossil power plants offers a lower cost and lower risk alternative to stand-alone solar plant construction. This study ranked the potential to add solar thermal energy to coal-fired and natural gas combined cycle (NGCC) plants found throughout 16 states in the southeast and southwest United States. Each generating unit was ranked in six categories to create an overall score ranging from Excellent to Not Considered. Separate analysis was performed for parabolic trough and power tower technologies due to the difference in the steam temperatures that each can generate. The study found a potential for over 11 GWe of parabolic trough and over 21 GWe of power tower capacity. Power towers offer more capacity and higher quality integration due to the greater steam temperatures that can be achieved. The best sites were in the sunny southwest, but all states had at least one site that ranked Good for augmentation. Geographic depiction of the results can be accessed via NREL’s Solar Power Prospector at http://maps.nrel.gov/.


Author(s):  
Hui Hong ◽  
Tao Han ◽  
Hongguang Jin

A novel solar-hybrid gas turbine combined cycle was proposed. The cycle integrates methanol-fueled chemical-looping combustion and solar thermal energy at around 200°C, and it was investigated with the aid of the Energy-Utilization Diagram (EUD). Solar thermal energy, at approximately 150°C–300°C, is utilized to drive the reduction of Fe2O3 with methanol in the reduction reactor, and is converted into chemical energy associated with the solid fuel FeO. Then it is released as high-temperature thermal energy during the oxidation of FeO in the oxidation reactor to generate electricity through the combined cycle. As a result, the exergy efficiency of the proposed solar thermal cycle may reach 58.4% at a turbine inlet temperature (TIT) of 1400°C, and the net solar-to-electric efficiency would be expected to be more than 30%. The promising results obtained here indicate that this solar-hybrid combined cycle not only offers a new approach for highly efficient use of middle-and-low temperature solar thermal energy to generate electricity, but also provides the possibility of simultaneously utilizing renewable energy and alternative fuel for CO2 capture with low energy penalty.


2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Hui Hong ◽  
Tao Han ◽  
Hongguang Jin

A novel solar-hybrid gas turbine combined cycle was proposed. The cycle integrates methanol-fueled chemical-looping combustion and solar thermal energy at around 200°C, and it was investigated with the aid of the energy-utilization diagram (EUD). Solar thermal energy, at approximately 150°C–300°C, is utilized to drive the reduction in Fe2O3 with methanol in the reduction reactor, and is converted into chemical energy associated with the solid fuel FeO. Then it is released as high-temperature thermal energy during the oxidation of FeO in the oxidation reactor to generate electricity through the combined cycle. As a result, the exergy efficiency of the proposed solar thermal cycle may reach 58.4% at a turbine inlet temperature of 1400°C, and the net solar-to-electric efficiency would be expected to be 22.3%. The promising results obtained here indicate that this solar-hybrid combined cycle not only offers a new approach for highly efficient use of middle-and-low temperature solar thermal energy to generate electricity, but also provides the possibility of simultaneously utilizing renewable energy and alternative fuel for CO2 capture with low energy penalty.


2006 ◽  
Vol 128 (3) ◽  
pp. 275-284 ◽  
Author(s):  
Hui Hong ◽  
Hongguang Jin ◽  
Baiqian Liu

In this paper we propose a novel CO2-recovering hybrid solar-fossil combined cycle with the integration of methane-fueled chemical-looping combustion, and investigate the system with the aid of the Energy-Utilization Diagram (EUD). Chemical-looping combustion (CLC) consists of two successive reactions: first, methane fuel is oxidized by metal oxide(NiO)as an oxygen carrier (reduction of metal oxide); and second, the reduced metal (Ni) is successively oxidized by combustion air (the oxidation of metal). The oxidation of methane with NiO requires a relative low-grade thermal energy at 300°C-500°C. Then concentrated solar thermal energy at approximately 450°C-550°C can be utilized to provide the process heat for this reaction. By coupling solar thermal energy with methane-fueled chemical-looping combustion, the energy level of solar thermal energy at around 450°C-550°C can be upgraded to the chemical energy of solid fuel Ni for better utilization of solar energy to generate electricity. The synergistic integration of solar thermal energy and chemical-looping combustion could make the exergy efficiency and the net solar-to-electric efficiency of the solar hybrid system more than 60% and 30%, respectively, at a turbine inlet temperature (TIT) of 1200°C. At the same time, this new system has an extremely important advantage of directly suppressing the environmental impact due to lack of energy penalty for CO2 recovery. Approximately 9–15 percentage points higher efficiency can be achieved compared to the conventional natural gas-fired combined cycle with CO2 separation. The results obtained here are promising and indicate that this novel solar hybrid combined cycle offers the new possibility of CO2 mitigation using both green energy and fossil fuels. These results also provide a new approach for highly efficient use of solar thermal energy to generate electricity.


Author(s):  
Jon W. Teets ◽  
J. Michael Teets

With the soaring price of oil and the global push toward reduction in carbon emissions, renewable energy is treated by many as a solution to the economic and environmental cost of consumption of fossil fuels. With the power plant reviewed in this paper use of Solar and Bio-fuels will be attained. During the day power needs can be met with Solar energy and when that energy supply is not adequate can use bio-fuels or fuel of choice (gaseous or liquid). If there is a need for use only with Solar energy (i.e. peak power demand) can shut down and restart when desired. Due to the size of the unit, start up is not a long labor intensive task and can be accomplished within the hour. The 150 Kw Integrated Solar Combined Cycle (ISCC) power plant is for commercial and residential use. The unit will produce 150 Kw electrical power output to customer with Solar Thermal Energy (STE). Solar Thermal energy is attained from parabolic trough concentrator(s). Working fluid in the STE system is Syltherm 800 (Silicone Heat Transfer Fluid) is acceptable use from –40F to 750 F. This fluid is heated and passes through a heat exchanger to transfer energy to the closed rankine cycle (where the liquid is changed to vapor stage. Steady state analysis performed on the rankine cycle, with ammonia / water mixture (50/50) used NIST standard reference database 23 for the thermodynamic and transport properties REFPROP [1]. A unique feature with the combined cycle unit, is the rankine cycle turbine wheel is directly attached to the power producing gas turbine spool, thus share a common high speed permanent magnet alternator assembly. The core gas turbine engine used in the combined cycle is a two spool, high pressure ratio (11:1) simple cycle microturbine with cycle efficiency of 20%, at 70Kw output electrical power (sea level standard day). The latter is defined as model TMA 70SC. In addition to the gas turbine engine and rankine turbine stage, the combined cycle incorporates a gas turbine waste heat boiler, economizer, condenser and economizer fluid preheater. The combined cycle unit, without thermal energy, will produce 145Kw (sea level standard day) with an electrical output efficiency of 40%. The gas turbine exhaust to atmosphere will be less than 240 F. The ISCC unit power producing spool / rotor will operate at 100% N regardless of gas turbine power demand. Whereas, spool number one will vary with gas turbine power demand. When the available solar thermal energy decreases the gas turbine fuel flow will increase to maintain electrical power, pending day conditions. The ISCC power plant, can be used for main power plants in [stand alone] communities, business, industrial or distributed energy (D.E.). Also, will provide electrical power to the customer at lower rate than traditional power companies.


Author(s):  
Hongguang Jin ◽  
Hui Hong ◽  
Jun Ji ◽  
Zhifeng Wang ◽  
Ruixian Cai

In this paper, we have proposed a novel solar–driven combined cycle with solar upgrading of methanol in middle temperature solar collectors, and investigated the effects of integration of solar thermal energy and methanol decomposition on the performance of the proposed cycle. The process of solar upgrading methanol is a catalytically endothermic decomposition reaction and proceeds in a range of 130–250° C. As a result, the proposed cycle has a breakthrough performance, with net solar–to–electric efficiency of 32.93% at the collector temperature of 220° C, and the turbine inlet temperature of 1062° C, superior to that of the present advanced cycle (REFOS of 20%). The exergy loss in indirect combustion of methanol proposed here is 7.5 percent points lower than that of the direct combustion. The optimum pressure ratio for thermal efficiency is approximately equal to 14. A key point emphasized here is that the proposed new cycle can utilize middle–temperature solar collector with lower cost. The promising results obtained here indicated that this novel solar–driven combined cycle could make a breakthrough in field of solar thermal power generation through integration of solar thermal energy and effective use of synthetic clean fuel.


2019 ◽  
Author(s):  
Karolina Matuszek ◽  
R. Vijayaraghavan ◽  
Craig Forsyth ◽  
Surianarayanan Mahadevan ◽  
Mega Kar ◽  
...  

Renewable energy has the ultimate capacity to resolve the environmental and scarcity challenges of the world’s energy supplies. However, both the utility of these sources and the economics of their implementation are strongly limited by their intermittent nature; inexpensive means of energy storage therefore needs to be part of the design. Distributed thermal energy storage is surprisingly underdeveloped in this context, in part due to the lack of advanced storage materials. Here, we describe a novel family of thermal energy storage materials based on pyrazolium cation, that operate in the 100-220°C temperature range, offering safe, inexpensive capacity, opening new pathways for high efficiency collection and storage of both solar-thermal energy, as well as excess wind power. We probe the molecular origins of the high thermal energy storage capacity of these ionic materials and demonstrate extended cycling that provides a basis for further scale up and development.


Sign in / Sign up

Export Citation Format

Share Document