Study on the condition monitoring system for the sliding surface using machine learning

Author(s):  
Tomomi Honda ◽  
Yuka Hashimoto
2018 ◽  
Vol 84 (868) ◽  
pp. 18-00275-18-00275
Author(s):  
Yuka HASHIMOTO ◽  
Tomomi HONDA ◽  
Yusuke MOCHIDA ◽  
Kazuhiko SUGIYAMA ◽  
Yumiko NAKAMURA ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Martina Kratochvílová ◽  
Jan Podroužek ◽  
Jiří Apeltauer ◽  
Ivan Vukušič ◽  
Otto Plášek

The presented paper concerns the development of condition monitoring system for railroad switches and crossings that utilizes vibration data. Successful utilization of such system requires a robust and efficient train type identification. Given the complex and unique dynamical response of any vehicle track interaction, the machine learning was chosen as a suitable tool. For design and validation of the system, real on-site acceleration data were used. The resulting theoretical and practical challenges are discussed.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Baoqi Yan ◽  
Nuoya Zhang ◽  
Ganggang Lu ◽  
Yue Hui

We have completed the design of an early warning and evaluation analysis module based on machine learning algorithms. Aiming at the prestressed CFRP-strengthened reinforced concrete bridges under natural exposure, we developed a theoretical model to analyze the long-term prestress loss of reinforced parts and the adhesion behavior of the CFRP-concrete interface under natural exposure conditions. The analysis deeply reveals the technical and engineering geomechanics characteristics of the D bridge. At the same time, through a series of experimental studies on the D bridge condition monitoring system, the data acquisition and transmission, processing and control of the D bridge condition monitoring system, and the bridge condition monitoring and evaluation software are provided. Regarding how to repair the engineering geomechanical characteristics of D bridge, we mentioned the prestressed CFRP reinforcement technology. The prestressed carbon fiber reinforced composite (CFRP) structure made of reinforced concrete (RC) makes better use of the high-strength characteristics of CFRP and changes. It strengthens the stress distribution of the components and improves the overall strength of the components. It is more supported by engineers in the civil engineering and transportation departments. However, most prestressed CFRP-reinforced RC structures are located in natural exposure environments, and the effect of natural exposure environments on the long-term mechanical properties of prestressed C FRP-reinforced RC components is still unclear. This article mainly uses the research on the engineering geomechanics characteristics and reinforcement technology of the bridge body, so that people have a deep understanding of its concept, and provides reasonable use methods and measures for the maintenance and protection of the bridge body in the future. This paper studies the characteristics of engineering geomechanics based on machine learning algorithms and applies them to the research of CFRP reinforcement technology, aiming to promote its better development.


Sign in / Sign up

Export Citation Format

Share Document