scholarly journals Research on Engineering Geomechanics Characteristics and CFRP Reinforcement Technology Based on Machine Learning Algorithms

2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Baoqi Yan ◽  
Nuoya Zhang ◽  
Ganggang Lu ◽  
Yue Hui

We have completed the design of an early warning and evaluation analysis module based on machine learning algorithms. Aiming at the prestressed CFRP-strengthened reinforced concrete bridges under natural exposure, we developed a theoretical model to analyze the long-term prestress loss of reinforced parts and the adhesion behavior of the CFRP-concrete interface under natural exposure conditions. The analysis deeply reveals the technical and engineering geomechanics characteristics of the D bridge. At the same time, through a series of experimental studies on the D bridge condition monitoring system, the data acquisition and transmission, processing and control of the D bridge condition monitoring system, and the bridge condition monitoring and evaluation software are provided. Regarding how to repair the engineering geomechanical characteristics of D bridge, we mentioned the prestressed CFRP reinforcement technology. The prestressed carbon fiber reinforced composite (CFRP) structure made of reinforced concrete (RC) makes better use of the high-strength characteristics of CFRP and changes. It strengthens the stress distribution of the components and improves the overall strength of the components. It is more supported by engineers in the civil engineering and transportation departments. However, most prestressed CFRP-reinforced RC structures are located in natural exposure environments, and the effect of natural exposure environments on the long-term mechanical properties of prestressed C FRP-reinforced RC components is still unclear. This article mainly uses the research on the engineering geomechanics characteristics and reinforcement technology of the bridge body, so that people have a deep understanding of its concept, and provides reasonable use methods and measures for the maintenance and protection of the bridge body in the future. This paper studies the characteristics of engineering geomechanics based on machine learning algorithms and applies them to the research of CFRP reinforcement technology, aiming to promote its better development.

2020 ◽  
Vol 12 (15) ◽  
pp. 5972
Author(s):  
Nicholas Fiorentini ◽  
Massimo Losa

Screening procedures in road blackspot detection are essential tools for road authorities for quickly gathering insights on the safety level of each road site they manage. This paper suggests a road blackspot screening procedure for two-lane rural roads, relying on five different machine learning algorithms (MLAs) and real long-term traffic data. The network analyzed is the one managed by the Tuscany Region Road Administration, mainly composed of two-lane rural roads. An amount of 995 road sites, where at least one accident occurred in 2012–2016, have been labeled as “Accident Case”. Accordingly, an equal number of sites where no accident occurred in the same period, have been randomly selected and labeled as “Non-Accident Case”. Five different MLAs, namely Logistic Regression, Classification and Regression Tree, Random Forest, K-Nearest Neighbor, and Naïve Bayes, have been trained and validated. The output response of the MLAs, i.e., crash occurrence susceptibility, is a binary categorical variable. Therefore, such algorithms aim to classify a road site as likely safe (“Accident Case”) or potentially susceptible to an accident occurrence (“Non-Accident Case”) over five years. Finally, algorithms have been compared by a set of performance metrics, including precision, recall, F1-score, overall accuracy, confusion matrix, and the Area Under the Receiver Operating Characteristic. Outcomes show that the Random Forest outperforms the other MLAs with an overall accuracy of 73.53%. Furthermore, all the MLAs do not show overfitting issues. Road authorities could consider MLAs to draw up a priority list of on-site inspections and maintenance interventions.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 606 ◽  
Author(s):  
Pablo Sala Elarre ◽  
Esther Oyaga-Iriarte ◽  
Kenneth H. Yu ◽  
Vicky Baudin ◽  
Leire Arbea Moreno ◽  
...  

Background: Although surgical resection is the only potentially curative treatment for pancreatic cancer (PC), long-term outcomes of this treatment remain poor. The aim of this study is to describe the feasibility of a neoadjuvant treatment with induction polychemotherapy (IPCT) followed by chemoradiation (CRT) in resectable PC, and to develop a machine-learning algorithm to predict risk of relapse. Methods: Forty patients with resectable PC treated in our institution with IPCT (based on mFOLFOXIRI, GEMOX or GEMOXEL) followed by CRT (50 Gy and concurrent Capecitabine) were retrospectively analyzed. Additionally, clinical, pathological and analytical data were collected in order to perform a 2-year relapse-risk predictive population model using machine-learning techniques. Results: A R0 resection was achieved in 90% of the patients. After a median follow-up of 33.5 months, median progression-free survival (PFS) was 18 months and median overall survival (OS) was 39 months. The 3 and 5-year actuarial PFS were 43.8% and 32.3%, respectively. The 3 and 5-year actuarial OS were 51.5% and 34.8%, respectively. Forty-percent of grade 3-4 IPCT toxicity, and 29.7% of grade 3 CRT toxicity were reported. Considering the use of granulocyte colony-stimulating factors, the number of resected lymph nodes, the presence of perineural invasion and the surgical margin status, a logistic regression algorithm predicted the individual 2-year relapse-risk with an accuracy of 0.71 (95% confidence interval [CI] 0.56–0.84, p = 0.005). The model-predicted outcome matched 64% of the observed outcomes in an external dataset. Conclusion: An intensified multimodal neoadjuvant approach (IPCT + CRT) in resectable PC is feasible, with an encouraging long-term outcome. Machine-learning algorithms might be a useful tool to predict individual risk of relapse. A small sample size and therapy heterogeneity remain as potential limitations.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Martina Kratochvílová ◽  
Jan Podroužek ◽  
Jiří Apeltauer ◽  
Ivan Vukušič ◽  
Otto Plášek

The presented paper concerns the development of condition monitoring system for railroad switches and crossings that utilizes vibration data. Successful utilization of such system requires a robust and efficient train type identification. Given the complex and unique dynamical response of any vehicle track interaction, the machine learning was chosen as a suitable tool. For design and validation of the system, real on-site acceleration data were used. The resulting theoretical and practical challenges are discussed.


Sign in / Sign up

Export Citation Format

Share Document