J056043 Simulation of Methane Partial Premixed Flame Using Combustion Technique Based on Chemical Equilibrium Method for Reducing Detailed Chemical Mechanisms

2011 ◽  
Vol 2011 (0) ◽  
pp. _J056043-1-_J056043-5
Author(s):  
Kazui Fukumoto ◽  
Yoshifumi Ogami
Author(s):  
Kazui Fukumoto ◽  
Yoshifumi Ogami

This research aims at developing a turbulent diffusion combustion model based on the chemical equilibrium method and chemical kinetics for simplifying complex chemical mechanisms. This paper presents a combustion model based on the chemical equilibrium method and the eddy dissipation concept (CE-EDC model); the CE-EDC model is validated by simulating a H2-air turbulent diffusion flame. In this model, the reaction rate of fuels and intermediate species is estimated by using the equations of the EDC model. Further, the reacted fuels and intermediate species are assumed to be in chemical equilibrium; the amount of the other species is determined from the amount of the reacted fuels, intermediate species, and air as reactants by using the Gibbs free energy minimization method. An advantage of the CE-EDC model is that the amount of the combustion products can be determined without using detailed chemical mechanisms. The results obtained by using this model were in good agreement with the experimental and computational data obtained by using the EDC model. Using this model, the amount of combustion products can be calculated without using detailed chemical mechanisms. Further, the accuracy of this model is same as that of the EDC model.


1986 ◽  
Vol 108 (3) ◽  
pp. 455-459 ◽  
Author(s):  
O¨. L. Gu¨lder

Empirical formulae are presented by means of which the partial pressures of CO2 and H2O in the combustion gases of aviation fuel-air and diesel fuel-air systems can be calculated as functions of pressure, temperature, equivalence ratio, and hydrogen-to-carbon atomic ratio of the fuel. The formulae have been developed by fitting the data from a detailed chemical equilibrium code to a functional expression. Comparisons of the results from the proposed formulae with the results obtained from a chemical equilibrium code have shown that the mean absolute error in predicted partial pressures is around 0.8 percent. These formulae provide a very fast and easy means of predicting partial pressures of CO2 and H2O as compared to equilibrium calculations, and they are also applicable to gasolines, residual fuels, and pure alkanes and aromatics as well as aviation and diesel fuels.


Author(s):  
Kazui Fukumoto ◽  
Yoshifumi Ogami

This paper describes an application of the partial chemical equilibrium method considered chemical kinetics in computational fluid dynamics (CFD). In this method, fuels and oxidants are mixed at a turbulent rate so that a mixture gas of fuel and oxygen is generated. Next, the mixture gas of fuel and oxygen is burnt by molecular diffusion thereby resulting in combustion gases. The turbulent mixture rate is estimated by the eddy dissipation model and the burning velocity is evaluated by the Arrhenius equation. Finally, the combustion products are calculated by the chemical equilibrium method by using the combustion gases. One of the advantages of this method is its ability to calculate the combustion products without using chemical equations. The chemical equilibrium method requires only thermo-chemical functions (specific heat, standard enthalpy, etc). This method can be applied to incinerators or some complex combustion instruments and it can predict the intermediate chemical species of dioxins, etc.


1994 ◽  
Vol 23 (1) ◽  
pp. 143-155 ◽  
Author(s):  
Sheng-Tao Yu ◽  
Bonnie J. McBride ◽  
Kwang-Chung Hsieh ◽  
Jian-Shun Shuen

Sign in / Sign up

Export Citation Format

Share Document