S054055 Three Dimensional Numerical Simulation of Control of Flow Around Circular Cylinder with Plasma Actuators

2011 ◽  
Vol 2011 (0) ◽  
pp. _S054055-1-_S054055-5
Author(s):  
Taichi IGARASHI ◽  
Kaoru INOUE ◽  
Hiroshi NAITO ◽  
Koji FUKAGATA
2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Taichi Igarashi ◽  
Hiroshi Naito ◽  
Koji Fukagata

Flow around a circular cylinder controlled using plasma actuators is investigated by means of direct numerical simulation (DNS). The Reynolds number based on the freestream velocity and the cylinder diameter is set atReD=1000. The plasma actuators are placed at±90° from the front stagnation point. Two types of forcing, that is, two-dimensional forcing and three-dimensional forcing, are examined and the effects of the forcing amplitude and the arrangement of plasma actuators are studied. The simulation results suggest that the two-dimensional forcing is primarily effective in drag reduction. When the forcing amplitude is higher, the mean drag and the lift fluctuations are suppressed more significantly. In contrast, the three-dimensional forcing is found to be quite effective in reduction of the lift fluctuations too. This is mainly due to a desynchronization of vortex shedding. Although the drag reduction rate of the three-dimensional forcing is slightly lower than that of the two-dimensional forcing, considering the power required for the forcing, the three-dimensional forcing is about twice more efficient.


AIAA Journal ◽  
2011 ◽  
Vol 49 (9) ◽  
pp. 1857-1870 ◽  
Author(s):  
Ying-Ju Lin ◽  
Jiun-Jih Miau ◽  
Jung-Kuo Tu ◽  
Hsing-Wen Tsai

Sign in / Sign up

Export Citation Format

Share Document