Design Optimization of Dynamic Vibration Absorber for Damped System Subjected to Random Excitation

2017 ◽  
Vol 2017 (0) ◽  
pp. J1010206
Author(s):  
Osamu NISHIHARA
2011 ◽  
Vol 42 (11) ◽  
pp. 15-19
Author(s):  
Linya Liu ◽  
Bin Zhang ◽  
Jin Wang

The rail between two adjacent fasteners is regarded as the research object, and the rail is simplified as the main vibration system of undamped single degree of freedom, which supports the elastic components. The dynamic vibration absorber is simplified as a spring and damped system of 3-DOF(three degrees of freedom), to establish a mathematical model of rail dynamic vibration absorber. Through relevant theories, the parameter values of dynamic vibration absorber can be deduced when it achieves the best absorption effect. In accordance with the parameters, the scantlings of the structure of the dynamic vibration absorber can also be designed. Through the finite element software, the finite element model CRTS _ Ballastless Track system is established; with consideration of the value of irregularity, we load it variously. Analysis results showed that: compared to the rail and track where the dynamic vibration absorber is not installed, the maximum vertical displacement of the rail and track where a dynamic vibration absorber is installed was reduced by 65% and 67% respectively, the maximum vertical acceleration decreased by 75% and 70% and around, which reveals that the rail dynamic vibration absorber has a good vibration-reducing effect.


Author(s):  
M Rajarathinam ◽  
Shaikh Faruque Ali

Abstract An energy harvesting dynamic vibration absorber is studied to suppress undesirable vibrations in a host structure as well as to harvest electrical energy from vibrations using piezoelectric transduction. The present work studies the feasibility of using vibration absorber for harvesting energy under random excitation and in presence of parametric uncertainties. A two degrees of freedom model is considered in the analytical formulation for the host along with the absorber. A separate equation is used for energy generation from piezoelectric material. Two studies are reported here, (i) with random excitation where the base input is considered to be Gaussian; (ii) parametric uncertainty is considered with harmonic excitation. Under random base excitation the analytical results show that, with the proper selection of parameters, harvested electrical energy can be increased along with the reduction in vibration of the host structure. Graphs are reported showing trade-off between harvested energy and vibration control. Whereas, Monte Carlo simulations are carried out to analyze the system with parametric uncertainty. This showed that the mean harvested power decreases with an increase in uncertainties in the natural frequency as well as damping ratio. In addition, optimal electrical parameters for obtaining maximum power for the case of uncertain parameters are also reported in this study.


2019 ◽  
Vol 52 (15) ◽  
pp. 531-536
Author(s):  
Takeshi Mizuno ◽  
Takahito Iida ◽  
Yuji Ishino ◽  
Masaya Takasaki ◽  
Daisuke Yamaguchi

Sign in / Sign up

Export Citation Format

Share Document