Elasto-plastic Analysis of a Circular Plate, which Membrane Force and Bending Moment Acts at the Same Time : Yielding Load for Large Deformation Analysis

2002 ◽  
Vol 2002.2 (0) ◽  
pp. 105-106
Author(s):  
Yasuyuki KATO ◽  
Ryoichi ASANO ◽  
Toshihiro NAKAGAWAI
1989 ◽  
Vol 111 (3) ◽  
pp. 312-315 ◽  
Author(s):  
D. W. Nicholson

This study concerns the analysis of the deflection of an elastic-plastic cantilevered beam. Three regions of solution are treated: (i) purely elastic response at low loads; (ii) elastic-plastic response without a hinge, for intermediate loads; and (iii) elastic-plastic response with a hinge for loads corresponding to the fully plastic bending moment at the built-in end. Most existing solutions for this type of problem involve various approximations avoided here, for example, ignoring the elastic part of the strain or using upper bounds based on limit analysis. By avoiding such approximations, the solution given here may be useful as a benchmark for validating finite element codes in the large deformation elastic-plastic regime. Several aspects of the solution are analyzed: (i) the load-deflection relation; (ii) the growth of the elastic-plastic zone; (iii) limiting cases; (iv) the residual configuration; (v) the small bending configuration. A numerical procedure based on Runge-Kutta methods is used, leading to the load-deflection relation in graphical form.


2019 ◽  
Vol 163 ◽  
pp. 146-167 ◽  
Author(s):  
Nasrin Jafari ◽  
Mojtaba Azhari ◽  
Bijan Boroomand

2010 ◽  
Vol 139-141 ◽  
pp. 893-896 ◽  
Author(s):  
Yuan Tong Gu

To accurately and effectively simulate large deformation is one of the major challenges in numerical modeling of metal forming. In this paper, an adaptive local meshless formulation based on the meshless shape functions and the local weak-form is developed for the large deformation analysis. Total Lagrangian (TL) and the Updated Lagrangian (UL) approaches are used and thoroughly compared each other in computational efficiency and accuracy. It has been found that the developed meshless technique provides a superior performance to the conventional FEM in dealing with large deformation problems for metal forming. In addition, the TL has better computational efficiency than the UL. However, the adaptive analysis is much more efficient using in the UL approach than using in the TL approach.


Sign in / Sign up

Export Citation Format

Share Document