OS1803 Influence of substrate roughness on adhesion strength of cold sprayed coatings

2014 ◽  
Vol 2014 (0) ◽  
pp. _OS1803-1_-_OS1803-2_
Author(s):  
Yuta WATANABE ◽  
Takayuki UCHIDA ◽  
Motohiro YAMADA ◽  
Masahiro FUKUMOTO
Author(s):  
Yuta Watanabe ◽  
Chisato Yoshida ◽  
Keisuke Atsumi ◽  
Motohiro Yamada ◽  
Masahiro Fukumoto

Author(s):  
Caroline Laforte ◽  
Jean-Louis Laforte

In order to develop an effective deicing device using mechanical deformation of substrates, the adhesive and/or cohesive strains of ice at rupture were measured for three different modes of solicitation: tensile, twisting and bending. A total of 108 icing/deicing tests were conducted with aluminum and nylon samples covered with hard rime ice deposits 2, 5, and 10 mm thick strained at various strains rates in brittle regime at −10°C. Real time deformation was precisely monitored using a strain gage fixed to the A1 interface, and force by means of load cells and a torque-meter. Deicing strain was determined at the time of ice detachment, which corresponds to a visible, instant change in the slope of stress-strain curves. The mean values of deicing strains, ε %, measured in tensile, torsion and bending experiments are respectively, 0.037 ± 0.015%, 0.043 ± 0.023% and 0.004 ± 0.003% As for adhesion strength, the highest values were obtained in tension, 4 MPa ± 50%, and the lowest in bending, 0.014 MPa ± 36%. In torsion, the value was intermediary, at 1.26 MPa ± 67%. Measurements also showed that deicing stress and strain tended to increase with substrate roughness, whereas they decrease with increasing ice thicknesses. In summary, this work points out the effects of two major factors on ice adhesion strength, the solicitation mode and the ice thickness. Finally these results suggest that the first criteria for a mechanical deicing device has to satisfy to be effective is to have the capacity to generating a strain at around 0.04% ice/substrate interface.


2020 ◽  
Vol 2020 (0) ◽  
pp. S11112
Author(s):  
Masahiro FUJII ◽  
Yusuke KEIKO ◽  
Yoshikazu TANAKA ◽  
Shinya FUJII

2011 ◽  
Vol 672 ◽  
pp. 358-383 ◽  
Author(s):  
NIKOS SAVVA ◽  
GRIGORIOS A. PAVLIOTIS ◽  
SERAFIM KALLIADASIS

We investigate theoretically the statistics of the equilibria of two-dimensional droplets over random topographical substrates. The substrates are appropriately represented as families of certain stationary random functions parametrized by a characteristic amplitude and wavenumber. In the limit of shallow topographies and small contact angles, a linearization about the flat-substrate equilibrium reveals that the droplet footprint is adequately approximated by a zero-mean, normally distributed random variable. The theoretical analysis of the statistics of droplet shift along the substrate is highly non-trivial. However, for weakly asymmetric substrates it can be shown analytically that the droplet shift approaches a Cauchy random variable; for fully asymmetric substrates its probability density is obtained via Padé approximants. Generalization to arbitrary stationary random functions does not change qualitatively the behaviour of the statistics with respect to the characteristic amplitude and wavenumber of the substrate. Our theoretical results are verified by numerical experiments, which also suggest that on average a random substrate neither enhances nor reduces droplet wetting. To address the question of the influence of substrate roughness on wetting, a stability analysis of the equilibria must be performed so that we can distinguish between stable and unstable equilibria, which in turn requires modelling the dynamics. This is the subject of Part 2 of this study.


Sign in / Sign up

Export Citation Format

Share Document