bending strain
Recently Published Documents


TOTAL DOCUMENTS

339
(FIVE YEARS 68)

H-INDEX

20
(FIVE YEARS 3)

Author(s):  
Prasoon Singh ◽  
Hyongdoo Jang ◽  
A. J. S. Sam Spearing

AbstractNumerical modelling has become an important tool in the underground rock bolt reinforcement designing process. Numerical modelling provides the advantage of easily and quickly simulating complex underground geometries and mechanisms with sensitivity analyses. However, a numerical model needs to be calibrated using mathematical solutions, lab testing or with actual in-situ observations and measurements (which is the preferred method) before its results can be quantitatively applied to reinforcement design. Instrumented rock bolts provide a useful data source for calibrating in-situ rock bolt models. In this work, procedures have been presented to identify and determine the orientation of structures in the rock mass based on the strains on the instrumented rock bolts. A method to calibrate the rock bolt model with in-situ data is also presented. The results of the presented procedures have been validated with laboratory tests and numerical modelling. The procedures have been applied to create and calibrate an in-situ rock bolt model in FLAC3D and the results are validated using in-situ data.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chanun Suwanpreecha ◽  
Anchalee Manonukul

Purpose The purpose of this paper is to systematically investigate the influence of build orientation on the anisotropic as-printed and as-sintered bending properties of 17-4PH stainless steel fabricated by metal fused filament fabrication (MFFF). Design/methodology/approach The bending properties of 17-4PH alloy fabricated by low-cost additive manufacturing (MFFF) using three build orientations (the Flat, On-edge and Upright orientations) are examined at both as-printed and as-sintered states. Findings Unlike tensile testing where the Flat and On-edge orientations provide similar as-sintered tensile properties, the On-edge orientation produces a significantly higher bending strain with a lower bending strength than the Flat orientation. This arises from the printed layer sliding due to the Poisson's effect, which is only observed in the On-edge orientation together with the alternated layers of highly deformed and shifted voids. The bending properties show that the Upright orientation exhibits the lowest bending properties and limited plasticity due to the layer delamination. Originality/value This study is the first work to study the effect of build orientation on the flexural properties for MFFF. This work gives insight information into anisotropy in flexural mode for MFFF part design.


2022 ◽  
pp. 136943322110499
Author(s):  
Jianying Ren ◽  
Bing Zhang ◽  
Xinqun Zhu ◽  
Shaohua Li

A new two-step approach is developed for damaged cable identification in a cable-stayed bridge from deck bending strain responses using Support Vector Machine. A Damaged Cable Identification Machine (DCIM) based on support vector classification is constructed to determine the damaged cable and a Damage Severity Identification Machine (DSIM) based on support vector regression is built to estimate the damage severity. A field cable-stayed bridge with a long-term monitoring system is used to verify the proposed method. The three-dimensional Finite Element Model (FEM) of the cable-stayed bridge is established using ANSYS, and the model is validated using the field testing results, such as the mode shape, natural frequencies and its bending strain responses of the bridge under a moving vehicle. Then the validated FEM is used to simulate the bending strain responses of the longitude deck near the cable anchors when the vehicle is passing over the bridge. Different damage scenarios are simulated for each cable with various severities. Based on damage indexes vector, the training datasets and testing datasets are acquired, including single damaged cable scenarios and double damaged cable scenarios. Eventually, DCIM is trained using Support Vector Classification Machine and DSIM is trained using Support Vector Regression Machine. The testing datasets are input in DCIM and DSIM to check their accuracy and generalization capability. Different noise levels including 5%, 10%, and 20% are considered to study their anti-noise capability. The results show that DCIM and DSIM both have good generalization capability and anti-noise capability.


Author(s):  
Shintaro Yoshihara ◽  
hideto YANAGIHARA

Abstract We have developed a method to variably induce lattice strains and to quantitatively evaluate the induced magnetic anisotropy. Both tensile and compressive strains were introduced into epitaxial films of cobalt ferrite (CFO) grown on a single crystal MgO(001) substrate using a four-point bending apparatus made of a plastic material fabricated by a 3D printer. The change in magnetic anisotropy due to bending strain can be measured quantitatively by using the conventional magneto-torque meter. The strain-induced magnetic anisotropy increased with the tensile strain and decreased with the compressive strain as expected from a phenomenological magnetoelastic theory. The magnetoelastic constant obtained from the changes in bending strains shows quantitatively good agreement with that of the CFO films with a uniaxial epitaxial strain. This signifies that the magnetoelastic constant can be evaluated by measuring only one film sample with strains applied by using the bending apparatus.


Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jinlong Ren ◽  
Yingchao Liu ◽  
Xingqiang Shi ◽  
Guangcun Shan ◽  
Mingming Tang ◽  
...  

Multifunctionality, interference-free signal readout, and quantum effect are important considerations for flexible sensors equipped within a single unit towards further miniaturization. To address these criteria, we present the slotted carbon nanotube (CNT) junction features tunable Fano resonance driven by flexoelectricity, which could serve as an ideal multimodal sensory receptor. Based on extensive ab initio calculations, we find that the effective Fano factor can be used as a temperature-insensitive extrinsic variable for sensing the bending strain, and the Seebeck coefficient can be used as a strain-insensitive intrinsic variable for detecting temperature. Thus, this dual-parameter permits simultaneous sensing of temperature and strain without signal interference. We further demonstrate the applicability of this slotted junction to ultrasensitive chemical sensing which enables precise determination of donor-type, acceptor-type, and inert molecules. This is due to the enhancement or counterbalance between flexoelectric and chemical gating. Flexoelectric gating would preserve the electron–hole symmetry of the slotted junction whereas chemical gating would break it. As a proof-of-concept demonstration, the slotted CNT junction provides an excellent quantum platform for the development of multistimuli sensation in artificial intelligence at the molecular scale.


Author(s):  
Aldos Issabayev ◽  
Timur Fazylov ◽  
Maksut Temirbayev ◽  
Maira Kopbayeva ◽  
Nurlan Duisenov ◽  
...  

Abstract Calcium hydroxyapatite is a widely used material for replacing bone defects. However, the effectiveness of nano-crystalline calcium hydroxyapatite produced from eggshells in the replacement of bone defects has not been investigated yet. The study aimed to evaluate the effectiveness of using nano-crystalline calcium hydroxyapatite made from eggshell for the healing of bone defect of the femur in rats. Forty-eight (n=48) rats underwent a surgical procedure to simulate femoral defect. The animals were sub-divided into 4 groups (each with n=12) depending on the methods of bone defect replacement: I control group (CG) (without bone defect replacement); II intervention group (the bone defect was replaced by PRP (PRP); III intervention group (the bone defect was replaced by nano-crystalline hydroxyapatite obtained from eggshell) (HA) and IV interventional group (the bone defect was replaced by a combination of hydroxyapatite and PRP) (HA+PRP). The degree of effectiveness of studied methods was assessed using radiological (on the 14th day), histological (on the 61st day), and biomechanical analysis (on the 61st day). According to radiographic data, the CG group had the lowest level of bone regeneration after 14 days (4.2 ±1.7%). In the HA + PRP group, the level of bone regeneration was 22.1±7.1 %, which was higher in comparison with the rates of consolidation of bone defects in the HA group (20.7± 9.3) (p = 0.023). According to the histo-morphometry data, the rates of bone tissue regeneration in the PRP group (19.8 ±4.2%) were higher in comparison with the CG group (12.7 ± 7.3%), (p>0.05). In the HA+PRP group, bone regeneration rates (48.9±9.4 %) were significantly higher (p=0.001) than in the HA group (35.1±9.8%). According to the results of biomechanical assessment under the maximum stress (121.0722), the maximum bending deformation of the contralateral bone without defect was 0.028746, which was higher than the indicators of the HA+PRP group, where at the maximum stress (90.67979) the bending deformation was 0.024953 (p>0.05). Compared to CG, PRP, and HA, biomechanical bone strength was significantly higher in the HA + PRP group (p≤0.01). At the maximum stress (51.81391), the maximum bending strain in the CG group was 0.03869, which was lower than in the PRP group, where the maximum stress and bending strain were 59.45824 and 0.055171, respectively (p>0.05). However, the bone strength of the HA group was statistically significantly higher compared to the CG and PRP groups (p<0.01). The results demonstrated the effectiveness of the use of nanocrystalline calcium hydroxyapatite obtained from eggshell in the healing of a bone defect. The best results were observed in the group of the combined use of nano-crystalline calcium hydroxyapatite and PRP.


2021 ◽  
Vol 277 ◽  
pp. 114652
Author(s):  
Furong Chen ◽  
Chao Hou ◽  
Shan Jiang ◽  
Chen Zhu ◽  
Lin Xiao ◽  
...  

Author(s):  
Jonas Diaz ◽  
Carsten Putzke ◽  
Xiangwei Huang ◽  
Amelia Estry ◽  
James Analytis ◽  
...  

Abstract We present an experimental set-up for the controlled application of strain gradients by mechanical piezoactuation on 3D crystalline microcantilevers that were fabricated by focused ion beam machining. A simple sample design tailored for transport characterization under strain at cryogenic temperatures is proposed. The topological semi-metal Cd3As2 serves as a test bed for the method, and we report extreme strain gradients of up to 1.3% µm-1 at a surface strain value of ≈ 0.65% at 4K. Interestingly, the unchanged quantum transport of the cantilever suggests that the bending cycle does not induce defects via plastic deformation. This approach is a first step towards realizing transport phenomena based on structural gradients, such as artificial gauge fields in topological materials.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7017
Author(s):  
Han Liu ◽  
Simon Laflamme ◽  
Jian Li ◽  
Caroline Bennett ◽  
William N. Collins ◽  
...  

The authors have previously proposed corrugated soft elastomeric capacitors (cSEC) to create ultra compliant scalable strain gauges. The cSEC technology has been successfully demonstrated in engineering and biomechanical applications for in-plane strain measurements. This study extends work on the cSEC to evaluate its performance at measuring angular rotation when installed folded at the junction of two plates. The objective is to characterize the sensor’s electromechanical behavior anticipating applications to the monitoring of welded connections in steel components. To do so, an electromechanical model that maps the cSEC signal to bending strain induced by angular rotation is derived and adjusted using a validated finite element model. Given the difficulty in mapping strain measurements to rotation, an algorithm termed angular rotation index (ARI) is formulated to link measurements to angular rotation directly. Experimental work is conducted on a hollow structural section (HSS) steel specimen equipped with cSECs subjected to compression to generate angular rotations at the corners within the cross-section. Results confirm that the cSEC is capable of tracking angular rotation-induced bending strain linearly, however with accuracy levels significantly lower than found over flat configurations. Nevertheless, measurements were mapped to angular rotations using the ARI, and it was found that the ARI mapped linearly to the angle of rotation, with an accuracy of 0.416∘.


Sign in / Sign up

Export Citation Format

Share Document