Fatigue Damage due to Lower Load than the Fatigue Limit of Spot-Welded Joints under Multi Two steps Variable Amplitude Load

2017 ◽  
Vol 2017 (0) ◽  
pp. GS0602
Author(s):  
Naoki MINAMI ◽  
Masaru HAYASHI ◽  
Noboru TOMIOKA
2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Sha Xu ◽  
Hao Chen ◽  
Yali Yang ◽  
Kun Gao

Abstract Three-dimensional (3D) reconstruction and finite element method are combined to study the damage behavior of aluminum alloy resistance spot-welded joints. Fatigue damage of spot-welded joints under different cyclic loading stages was obtained by X-ray microcomputed tomography (X-ray micro CT). Then, avizo software was used to reconstruct the scanned data of joints with different damage degrees, and the distribution and variation of defects in the joints are obtained. On this basis, 3D finite element damage models were established. Finite element calculations were carried out to analyze the fatigue damage of spot-welded joints by adopting the effective elastic modulus as the damage parameter. The results show that the effective elastic modulus is consistent with the experimental results. The method of combining 3D reconstruction with the finite element method can be used to evaluate the internal damage of spot-welded joints and provide theoretical basis for the prediction of fatigue life.


Author(s):  
Y.-H. Zhang ◽  
S. J. Maddox

In the fatigue design of steel catenary risers there are concerns regarding the fatigue damage to girth welds from low stresses, below the constant amplitude fatigue limit, in the loading spectrum and the validity of Miner’s cumulative damage rule. In both cases there is increasing evidence that current design methods can be non-conservative. These fundamental issues were addressed in a recent JIP. A key feature was development of the resonance fatigue testing rigs to enable them to test full-scale pipes under variable amplitude loading. Such tests were performed under a loading spectrum representative of that experienced by some risers, with many tests lasting over 100 million cycles to investigate the fatigue damage due to small stresses as well as the validity of Miner’s rule. However, the resonance rigs are only capable of producing spectrum loading by gradually increasing or decreasing the applied load, whereas more ‘spiky’ random load sequences may be relevant in practice. Therefore the programme also included fatigue tests in conventional testing machines on strip specimens cut from pipes to compare the two types of loading sequence. This paper presents the results of these tests, conclusions drawn and recommendations for changes to current fatigue design guidance for girth welded pipes regarding the definition of the fatigue limit, allowance for the damaging effect of low stresses and the validity of Miner’s rule.


Sign in / Sign up

Export Citation Format

Share Document