333 Determination of High Strain-Rate Compressive Stress : Strain Loops for Polylactic Acid

2013 ◽  
Vol 2013.21 (0) ◽  
pp. _333-1_-_333-2_
Author(s):  
Kenji NAKAI ◽  
Takashi YOKOYAMA
2014 ◽  
Vol 566 ◽  
pp. 80-85
Author(s):  
Kenji Nakai ◽  
Takashi Yokoyama

The present paper is concerned with constitutive modeling of the compressive stress-strain behavior of selected polymers at strain rates from 10-3 to 103/s using a modified Ramberg-Osgood equation. High strain-rate compressive stress-strain curves up to strains of nearly 0.08 for four different commercially available extruded polymers were determined on the standard split Hopkinson pressure bar (SHPB). The low and intermediate strain-rate compressive stress-strain relations were measured in an Instron testing machine. Six parameters in the modified Ramberg-Osgood equation were determined by fitting to the experimental stress-strain data using a least-squares fit. It was shown that the monotonic compressive stress-strain behavior over a wide range of strain rates can successfully be described by the modified Ramberg-Osgood constitutive model. The limitations of the model were discussed.


2011 ◽  
Vol 83 ◽  
pp. 130-135 ◽  
Author(s):  
Takashi Yokoyama ◽  
Kenji Nakai ◽  
Norfazrina Hayati Mohd Yatim

The high strain-rate compressive stress-strain loops for bulk specimens of an epoxy structural adhesive are determined on the standard split Hopkinson pressure bar. The compressive stress-strain data including unloading curves are obtained over a wide range of strain rates from 10-3to 103/s. The effects of strain rate on the initial (secant) modulus, flow stress, dissipation energy and hysteresis loss ratio are discussed. The experimental results show that the bulk structural adhesive exhibits dynamic viscoelastic behavior like polymers.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Chithajalu Kiran Sagar ◽  
Amrita Priyadarshini ◽  
Amit Kumar Gupta ◽  
Tarun Kumar ◽  
Shreya Saxena

Abstract With advances in computational techniques, numerical methods such as finite element method (FEM) are gaining much of the popularity for analysis as these substitute the expensive trial and error experimental techniques to a great extent. Consequently, selection of suitable material models and determination of precise material model constants are one of the prime concerns in FEM. This paper presents a methodology to determine the Johnson-Cook constitutive equation constants (JC constants) of 97 W Tungsten heavy alloys (WHAs) under high strain rate conditions using machining tests in conjunction with Oxley’s predictive model and particle swarm optimization (PSO) algorithm. Currently, availability of the high strain rate data for 97 WHA are limited and consequently, JC constants for the same are not readily available. The overall methodology includes determination of three sets of JC constants, namely, M1 and M2 from the Split-Hopkinson pressure bar (SHPB) test data available in literature by using conventional optimization technique and artificial bee colony (ABC) algorithm, respectively. However, M3 is determined from machining tests using inverse identification method. To validate the identified JC constants, machining outputs (cutting forces, temperature, and shear strain) are predicted using finite element (FE) model by considering M1, M2, and M3 as input under different cutting conditions and then validated with corresponding experimental values. The predicted outputs obtained using JC constants M3 closely matched with that of the experimental ones with error percentage well within 10%.


2015 ◽  
Vol 3 (2) ◽  
pp. 80-85
Author(s):  
Sunita Mishra ◽  
Tanusree Chakraborty ◽  
Dipanjan Basu

Sign in / Sign up

Export Citation Format

Share Document