Finite element analysis for optimal design of fuel cell pressure vessels

2020 ◽  
Vol 2020.28 (0) ◽  
pp. 104
Author(s):  
Riku SUZUKI ◽  
Noboru KATAYAMA ◽  
Kiyoshi DOWAKI ◽  
Shinji OGIHARA
2015 ◽  
Vol 1090 ◽  
pp. 233-237
Author(s):  
Ji Jun Miao ◽  
Ri Sheng Long

In order to solve the cracking and poor reliability problems of motor box of Horizontal Roadheader, the static structural FEA (Finite Element Analysis) of cutting arm & motor box of the EBH160 Horizontal Roadheader was conducted, and the stress and strain contours of FEA were obtained. By comparing the calculated results, the safety factor of cutting arm & motor box was 1.36, which provides a reference for the optimal design of cutting arm & motor box.


2012 ◽  
Vol 538-541 ◽  
pp. 3253-3258 ◽  
Author(s):  
Jun Jian Xiao

According to the results of finite element analysis (FEA), when the diameter of opening of the flat cover is no more than 0.5D (d≤0.5D), there is obvious stress concentration at the edge of opening, but only existed within the region of 2d. Increasing the thickness of flat covers could not relieve the stress concentration at the edge of opening. It is recommended that reinforcing element being installed within the region of 2d should be used. When the diameter of openings is larger than 0.5D (d>0.5D), conical or round angle transitions could be employed at connecting location, with which the edge stress decreased remarkably. However, the primary stress plus the secondary stress would be valued by 3[σ].


Author(s):  
Ajay Garg

Abstract In high pressure applications, rectangular blocks of steel are used instead of cylinders as pressure vessels. Bores are drilled in these blocks for fluid flow. Intersecting bores with axes normal to each other and of almost equal diameters, produce stresses which can be many times higher than the internal pressure. Experimental results for the magnitude of maximum tensile stress along the intersection contour were available. A parametric finite element model simulated the experimental set up, followed by correlation between finite element analysis and experimental results. Finally, empirical methods are applied to generate models for the maximum tensile stress σ11 at cross bores of open and close ended blocks. Results from finite element analysis and empirical methods are further matched. Design optimization of cross bores is discussed.


2018 ◽  
Vol 167 ◽  
pp. 02017
Author(s):  
Yunsik Yang ◽  
Euy Sik Jeon ◽  
Dae Ho Park

Several studies have been conducted to prevent neck injury in rear-end collision. The headrest of the seat which suppresses the relative motion of the head and the torso can suppress the extension of the head, thereby alleviating the injury. The active headrest has a mechanism that supports the head by deploying the headrest at the rear-end collision. The spring remains compressed or twisted until a collision signal is generated and the headrest is deployed after the collision signal. Depending on the shape and deployment structure of the spring, a spring design with a high resilience that is acceptable to the headrest is required. In this paper, design parameter of spiral spring suitable for the structure of the developed headrest is selected, prototypes are fabricated, and development parameters such as development time and development distance are checked and optimal design parameters of the spiral spring are derived. The feasibility of the headrest with the designed spiral spring was verified by the finite element analysis.


Author(s):  
Shunji Kataoka ◽  
Takuya Sato

Creep-fatigue damage is one of the dominant failure modes for pressure vessels and piping used at elevated temperatures. In the design of these components the inelastic behavior should be estimated accurately. An inelastic finite element analysis is sometimes employed to predict the creep behavior. However, this analysis needs complicated procedures and many data that depend on the material. Therefore the design is often based on a simplified inelastic analysis based on the elastic analysis result, as described in current design codes. A new, simplified method, named, Stress Redistribution Locus (SRL) method, was proposed in order to simplify the analysis procedure and obtain reasonable results. This method utilizes a unique estimation curve in a normalized stress-strain diagram which can be drawn regardless of the magnitude of thermal loading and constitutive equations of the materials. However, the mechanism of SRL has not been fully investigated. This paper presents results of the parametric inelastic finite element analyses performed in order to investigate the mechanism of SRL around a structural discontinuity, like a shell-skirt intersection, subjected to combined secondary bending stress and peak stress. This investigation showed that SRL comprises a redistribution of the peak and secondary stress components and that although these two components exhibit independent redistribution behavior, they are related to each other.


Sign in / Sign up

Export Citation Format

Share Document