1A1-S-062 Motion Control of a 2-Legged Hopping Robot Based on Reinforcement Learning(Evolution and Learning for Robotics 1,Mega-Integration in Robotics and Mechatronics to Assist Our Daily Lives)

Author(s):  
Tsuyoshi Tsuda ◽  
Keita Nakagawa ◽  
Kazuyoshi Tutumi
Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4794
Author(s):  
Alejandro Rodriguez-Ramos ◽  
Adrian Alvarez-Fernandez ◽  
Hriday Bavle ◽  
Pascual Campoy ◽  
Jonathan P. How

Deep- and reinforcement-learning techniques have increasingly required large sets of real data to achieve stable convergence and generalization, in the context of image-recognition, object-detection or motion-control strategies. On this subject, the research community lacks robust approaches to overcome unavailable real-world extensive data by means of realistic synthetic-information and domain-adaptation techniques. In this work, synthetic-learning strategies have been used for the vision-based autonomous following of a noncooperative multirotor. The complete maneuver was learned with synthetic images and high-dimensional low-level continuous robot states, with deep- and reinforcement-learning techniques for object detection and motion control, respectively. A novel motion-control strategy for object following is introduced where the camera gimbal movement is coupled with the multirotor motion during the multirotor following. Results confirm that our present framework can be used to deploy a vision-based task in real flight using synthetic data. It was extensively validated in both simulated and real-flight scenarios, providing proper results (following a multirotor up to 1.3 m/s in simulation and 0.3 m/s in real flights).


2005 ◽  
Vol 17 (1) ◽  
pp. 89-100
Author(s):  
Gustavo Kato ◽  
◽  
Hiroyuki Kojima ◽  
Mamoru Yoshida ◽  
Yusuke Wakabayashi ◽  
...  

In this report, a new-type two-joint articulated hopping robot with two stopper mechanisms is developed. The two rotary joints are actuated by two DC motors with reduction gears. In this new-type two-joint articulated hopping robot with two stopper mechanisms, the hopping motion actions are achieved by the two joint rotational dynamics and the two stopper mechanisms. Using the two stopper mechanisms, the angular momentums and momentums of the two links are transformed into the hopping motion action according to the law of conservation of angular momentum and momentum. Then, the hopping motion control system is constructed to fit the DC motor characteristics, and the effects of the stopper settings and the delay time of the control voltage of the DC motor on the hopping motion performance are experimentally investigated. Furthermore, the examples of the hopping motion control experiments are demonstrated, and it is confirmed that the forwards and backwards hopping motion actions can be successfully performed.


Sign in / Sign up

Export Citation Format

Share Document