2A2-F20 A posture control of a spherical wrist joint using pneumatic artificial muscles

2009 ◽  
Vol 2009 (0) ◽  
pp. _2A2-F20_1-_2A2-F20_2
Author(s):  
Takanori OGASAWARA ◽  
Naoki SAITO ◽  
Nobuhiko SAGA
2021 ◽  
Vol 1 (4) ◽  
pp. 440-452
Author(s):  
Sa’aadat Syafeeq Lone ◽  
Norsinnira Zainul Azlan ◽  
Norhaslinda Kamarudzaman

A huge population of the world is suffering from various kinds of disabilities that make basic daily activities to be challenging. The use of robotics for limb rehabilitation can assist patients to recover faster and reduce therapist to patient ratio. However, the main problems with current rehabilitation robotics are the devices are bulky, complicated, and expensive. The utilization of pneumatic artificial muscles in a rehabilitation system can reduce the design complexity, thus, making the whole system light and compact. This paper presents the development of a new 2 degree of freedom (DOF) wrist motion and thumb motion exoskeleton. A light-weight 3D printed Acrylonitrile Butadiene Styrene (ABS) material is used to fabricate the exoskeleton. The system is controlled by an Arduino Uno microcontroller board that activates the relay to open and close the solenoid valve to actuate the wrist. It allows the air to flow into and out of the pneumatic artificial muscles (PAM) based on the feedback from the sliding potentiometer. The mathematical model of the exoskeleton has been formulated using the Lagrange formula. A Proportional Integral Derivative (PID) controller has been implemented to drive the wrist extension-flexion motion in achieving the desired set-points during the exercise. The results show that the exoskeleton has successfully realized the wrist and thumb movements as desired. The wrist joint tracked the desired position with a maximum steady-state error of 10% for 101.45ᵒ the set point.


2021 ◽  
Vol 18 (1) ◽  
pp. 172988142098603
Author(s):  
Daoxiong Gong ◽  
Mengyao Pei ◽  
Rui He ◽  
Jianjun Yu

Pneumatic artificial muscles (PAMs) are expected to play an important role in endowing the advanced robot with the compliant manipulation, which is very important for a robot to coexist and cooperate with humans. However, the strong nonlinear characteristics of PAMs hinder its wide application in robots, and therefore, advanced control algorithms are urgently needed for making the best use of the advantages and bypassing the disadvantages of PAMs. In this article, we propose a full-order sliding mode control extended state observer (fSMC-ESO) algorithm that combines the ESO and the fSMC for a robotic joint actuated by a pair of antagonistic PAMs. The fSMC is employed to eliminate the chattering and to guarantee the finite-time convergence, and the ESO is adopted to observe both the total disturbance and the states of the robot system, so that we can inhibit the disturbance and compensate the nonlinearity efficiently. Both simulations and physical experiments are conducted to validate the proposed method. We suggest that the proposed method can be applied to the robotic systems actuated by PAMs and remarkably improve the performance of the robot system.


2021 ◽  
Author(s):  
Jiang Zou ◽  
Miao Feng ◽  
Ningyuan Ding ◽  
Peinan Yan ◽  
Haipeng Xu ◽  
...  

Abstract Although the advances in artificial muscles enable creating soft robots with biological dexterity and self-adaption in unstructured environments, producing scalable artificial muscles with multiple-mode actuations is still elusive. Inspired by muscle-fiber arrays in muscular hydrostats, we present a class of versatile artificial muscles, called MAIPAMs (Muscle-fiber Array Inspired Pneumatic Artificial Muscles), capable of multiple-mode actuations (such as parallel elongation-bending-spiraling actuations, parallel 10 bending actuations, and cascaded elongation-bending-spiraling actuations). Our MAIPAMs mainly consist of active 3D elastomer-balloon arrays reinforced by a passive elastomer membrane, which is achieved through a planar design and one-step rolling fabrication approach. We introduce the prototypical designs of MAIPAMs and demonstrate their muscle-mimic structures and versatility, as well as their scalable ability to integrate flexible while un-stretchable layers for contraction and twisting actuations and compliant electrodes for self-sensing. We further demonstrate that this class of artificial muscles shows promising potentials for versatile robotic applications, such as carrying a camera for recording videos, gripping and manipulating objects, and climbing a pipe-line.


2016 ◽  
Vol 11 (5) ◽  
pp. 056014 ◽  
Author(s):  
Sylvie A DeLaHunt ◽  
Thomas E Pillsbury ◽  
Norman M Wereley

2013 ◽  
Vol 460 ◽  
pp. 1-12 ◽  
Author(s):  
Alexander Hošovský ◽  
Kamil Židek

Pneumatic artificial muscles belong to a category of nonconventional pneumatic actuators that are distinctive for their high power/weight ratio, simple construction and low price and maintenance costs. As such, pneumatic artificial muscles represent an alternative type of pneumatic actuator that could replace the traditional ones in certain applications. Due to their specific construction, PAM-based systems have nonlinear characteristics which make it more difficult to design a control system with good performance. In the paper, a gray-box model (basically analytical but with certain experimental parts) of the one degree-of-freedom PAM-based actuator is derived. This model interconnects the description of pneumatic and mechanical part of the system through a set of several nonlinear differential equations and its main purpose is the design of intelligent control system in simulation environment. The model is validated in both open-loop and closed-loop mode using the measurements on real plant and the results confirm that model performance is in good agreement with the performance of real actuator.


Sign in / Sign up

Export Citation Format

Share Document