lagrange formula
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 6)

H-INDEX

2
(FIVE YEARS 1)

2021 ◽  
Vol 1 (4) ◽  
pp. 440-452
Author(s):  
Sa’aadat Syafeeq Lone ◽  
Norsinnira Zainul Azlan ◽  
Norhaslinda Kamarudzaman

A huge population of the world is suffering from various kinds of disabilities that make basic daily activities to be challenging. The use of robotics for limb rehabilitation can assist patients to recover faster and reduce therapist to patient ratio. However, the main problems with current rehabilitation robotics are the devices are bulky, complicated, and expensive. The utilization of pneumatic artificial muscles in a rehabilitation system can reduce the design complexity, thus, making the whole system light and compact. This paper presents the development of a new 2 degree of freedom (DOF) wrist motion and thumb motion exoskeleton. A light-weight 3D printed Acrylonitrile Butadiene Styrene (ABS) material is used to fabricate the exoskeleton. The system is controlled by an Arduino Uno microcontroller board that activates the relay to open and close the solenoid valve to actuate the wrist. It allows the air to flow into and out of the pneumatic artificial muscles (PAM) based on the feedback from the sliding potentiometer. The mathematical model of the exoskeleton has been formulated using the Lagrange formula. A Proportional Integral Derivative (PID) controller has been implemented to drive the wrist extension-flexion motion in achieving the desired set-points during the exercise. The results show that the exoskeleton has successfully realized the wrist and thumb movements as desired. The wrist joint tracked the desired position with a maximum steady-state error of 10% for 101.45ᵒ the set point.


2021 ◽  
Vol 5 (3) ◽  
pp. 76
Author(s):  
Yuanyuan Wang ◽  
HongGuang Sun ◽  
Siyuan Fan ◽  
Yan Gu ◽  
Xiangnan Yu

This paper proposes a nonlocal fractional peridynamic (FPD) model to characterize the nonlocality of physical processes or systems, based on analysis with the fractional derivative model (FDM) and the peridynamic (PD) model. The main idea is to use the fractional Euler–Lagrange formula to establish a peridynamic anomalous diffusion model, in which the classical exponential kernel function is replaced by using a power-law kernel function. Fractional Taylor series expansion was used to construct a fractional peridynamic differential operator method to complete the above model. To explore the properties of the FPD model, the FDM, the PD model and the FPD model are dissected via numerical analysis on a diffusion process in complex media. The FPD model provides a generalized model connecting a local model and a nonlocal model for physical systems. The fractional peridynamic differential operator (FPDDO) method provides a simple and efficient numerical method for solving fractional derivative equations.


2020 ◽  
pp. 105-108
Author(s):  
Жылдызбек Туркманов ◽  
Бегайым Шамбетова

Аннотация: Биздин заманда билим алууга болгон көз караш өзгөрдү: мурун маалымат алуу абдан маанилүү болсо, азыр маалыматтарды колдонууну билиш керек. Себеби, азыркы турмушта Google сыяктуу маалымат булактары бар. Биз биргелешкен математика курсу синергияны пайда кылып, алгебра менен геометриянын элементтерин өздөштүрүүгө жардам берет деп ишенебиз. Алгебралык, дифференциалдык жана интегралдык теӊдемелердин жакындаштырылган чыгарылыштарын тургузууда жана ошондой эле ар кандай интегралдарды баалоодо параметрдин же көз карандысыз өзгөрүлмөнүн даражасы бар катарлар менен иштөөгө туура келет. Негизинен даражалуу катарга ажыратуу Ньютондун биномунун формуласынын жардамы менен же Тейлордун катарын колдонуу жолу аркылуу тургузулат. Бул илимий макалада ошол тууралуу сөз болот. Түйүндүү сөздөр: Тейлордун катары, Маклорендин катары, катарга ажыратуу, көрсөткүчтүү функция, тригонометриялык функциялар, сумма, интервал, бардык чыныгы сандардын огу, жыйналуучу катар, Коши-Адамардын формуласы, Лагранж формуласындагы калдык мүчө, көрсөткүчү бар биномдук катар, логарифмикалык функция, барабардык, касиеттер, аргументтин мааниси, даража, тактык, тартип, баалоо. Аннотация: В области математики знание точных формулировок определений, теорем и т.п. теперь не столь важно, как умение их использовать для решения задач, связанных с окружающей действительностью. Мы убеждены в том, что курс математики, объединяющий элементы алгебры и геометрии поможет повысить уровень усвоения материала за счет эффекта синергии, возникающего при этом. При построении приближенных решений алгебраических, дифференциальных и интегральных уравнений, а также при оценке различных интегралом нам приходится иметь дело с рядами по степеням параметра или независимой переменной. Такие разложения в степенные ряды строятся обычно либо с помощью формулы бинома Ньютона, либо путем использования рядов Тейлора. О них и пойдет речь ниже. Ключевые слова: Ряд Тейлора, ряд Маклорена, разложения в ряд, Показательная функция, тригонометрические функции, сумма, интервал, на всей действительной оси, сходящийся ряд, формула Коши-Адамара, остаточный член в формуле Лагранжа, биноминальный ряд с показателем , логарифмическая функция, равенства, свойства, значение аргумента, степень, точность, порядок, оценка. Аnnotation: Nowadays, getting general information is easy an ditisim portant to beable to correctly interpretand use existing data. In the field of mathematics, knowledge of exact formulations of definitions, theorems, etc. now it is not so important as the ability to use them for solving problems related to the surround dingreality. We are convinced that the course of mathematics, combining the elements of Algebra and Geometry, will help to in crease the level of mastering matterdueto the synergy effect thatarises. In constructing approximate solutions of algebraic differential, and integral equations, as well as in estimating various integrals, we have to deal with series in powers of a parameter or an independent variable. Such power series expansions are usually constructed either using the Newton binomial formula, or by using the Taylor series. About them find it below. Keywords: Taylor series, Maclaurin series, series expansions, Exponential function, trigonometric functions, sum, interval, on the whole real axis, convergent series, Cauchy-Hadamard formula, residual term in Lagrange formula, binomial series with exponent μ, logarithm function, equalities, properties, argument value, degree, accuracy, order, evaluation.


2019 ◽  
Vol 238 ◽  
pp. 52-66 ◽  
Author(s):  
J.M. Carnicer ◽  
Y. Khiar ◽  
J.M. Peña

2019 ◽  
Vol 10 (1) ◽  
pp. 16-29
Author(s):  
Baltabek Kanguzhin, ◽  
◽  
Lyailya Zhapsarbayeva ◽  
Zhumabay Madibaiuly ◽  
◽  
...  

2018 ◽  
Vol 874 ◽  
pp. 44-49
Author(s):  
Sony Junianto ◽  
Rudi Walujo Prastianto ◽  
Mukhtasor

Ocean renewable energy research has been progressing well. Supporting structures are needed to convert energy from the sea. This paper discusses the response of the floating structure for ocean renewable energy conversion system by providing a simple design of floating structure. Due to its function, the system is limited for the pitching motion. By using the Lagrange formula, the equation of motion of the system can be obtained. In the analysis, there are three variations of wave period to determine the response of floating structure motion. The result shows the trend where the larger wave periods induce larger intersection angle (larger response) of the structure. The floating structure configuration for the ocean energy converter should be determined in such a way that have the most stable motion-response in any condition. The stability of floating structure will affect the current forces in the rotated turbine. It needs a specific design to hold the stability of floating structure.


Robotica ◽  
2015 ◽  
Vol 35 (5) ◽  
pp. 1138-1156 ◽  
Author(s):  
Mohammad Altaher ◽  
Omaima Nomir

SUMMARYThis paper introduces a solution to the problem of steering an aerodynamical system, with non-holonomic constraints superimposed on dynamic equations of motion. The proposed approach is a dimensionality reduction of the Optimal Control Problem (OCP) with heavy path constraints to be solved by Rapidly-Exploring Random Tree (RRT) algorithm. In this research, we formulated and solved the OCP with Euler–Lagrange formula in order to find the optimal-time trajectory. The RRT constructs a non-collision path in static, high-dense obstacle environment (i.e. heavy path constraint). Based on a real-world aircraft model, our simulation results found the collision-free path and gave improvements of time and fuel consumption of the optimized Hamiltonian-based model over the original non-optimized model.


Sign in / Sign up

Export Citation Format

Share Document