B132 Arrangement of Flame Structure by Reaction Progress Variable and Its Gradient in Unsteady Counter-flow Premixed Flame When Changing Equivalence Ratio

2005 ◽  
Vol 2005 (0) ◽  
pp. 63-64
Author(s):  
Naoki Hayashi ◽  
Hiroshi Yamashita ◽  
Yuji Nakamura ◽  
Kazuhiro Yamamoto
Author(s):  
S. K. Aggarwal ◽  
H. S. Xue

Partially premixed flames are formed by mixing air (in less than stoichiometric amounts) into the fuel stream prior to the reaction zone, where additional air is available for complete combustion. Such flames can occur in both laboratory and practical combustion systems. In advanced gas turbine combustor designs, such as a lean direct injection (LDI) combustor, partially premixed combustion represents an impotent mode of burning. Spray combustion often involves partially premixed combustion due to the locally fuel vapor-rich regions. In the present study, the detailed structure of n-heptane/air partially premixed flame in a counterflow configuration is investigated. The flame is computed by employing the Oppdif code and a detailed reaction mechanism consisting of 275 elementary reactions and 41 species. The partially premixed flame structure is characterized by two-stage burning or two distinct but synergistically coupled reaction zones, a rich premixed zone on the fuel side and a ‘nonpremixed zone on the air side. The fuel is completely consumed in the premixed zone with ethylene and acetylene being the major intermediate species. The reactions involving the consumption of these species are found to be the key rate-limiting reactions that characterize interactions between the two reaction zones, and determine the overall fuel consumption rate. The flame response to the variations in equivalence ratio and strain rate is examined. Increasing equivalence ratio and/or strain rate to a critical value leads to merging of the two reaction zones. The equivalence ratio variation affects the rich premixed reaction zone, while the variation in strain rate predominantly affects the nonpremixed reaction zone. The flame structure is also characterized in terms of a modified mixture fraction (conserved scalar), and laminar flamelet profiles are provided.


Author(s):  
Stephan Lellek ◽  
Thomas Sattelmayer

With the transition of the power production markets towards renewable energy sources an increased demand for flexible, fossil based power production systems arises. Steep load gradients and a high range of flexibility make gas turbines a core technology in this ongoing change. In order to further increase this flexibility research on power augmentation of premixed gas turbine combustors is conducted at the Lehrstuhl für Thermodynamik, TU München. Water injection in gas turbine combustors allows for the simultaneous control of NOx emissions as well as the increase of the power output of the engine and has therefore been transferred to a premixed combustor at lab scale. So far stable operation of the system has been obtained for water-to-fuel ratios up to 2.25 at constant adiabatic flame temperatures. This paper focuses on the effects of water injection on pollutant formation in premixed gas turbine flames. In order to guarantee for high practical relevance experimental measurements are conducted at typical preheating temperatures and common gas turbine combustor residence times of about 20 ms. Spatially resolved and global species measurements are performed in an atmospheric single burner test rig for typical adiabatic flame temperatures between 1740 and 2086 K. Global measurements of NOx and CO emissions are shown for a wide range of equivalence ratios and variable water-to-fuel ratios. Cantera calculations are used to identify non-equilibrium processes in the measured data. To get a close insight into the emission formation processes in water injected flames local concentration measurements are used to calculate distributions of the reaction progress variable. Finally, to clarify the influence of spray quality on the composition of the exhaust gas a variation of the water droplet diameters is done. For rising water content at constant adiabatic flame temperature the NOx emissions can be held constant, whereas CO concentrations increase. On the contrary, both values decrease for measurements at constant equivalence ratio and reduced flame temperatures. Further analysis of the data shows the close dependency of CO concentration on the equivalence ratio, however, due to the water addition a shift of the CO curves can be detected. In the local measurements changes in the distribution of the reaction progress variable and an increase of the flame length were detected for water injected flames along with changes of the maximum as well as the averaged CO values. Finally, a strong influence of water droplet size on NOx and CO formation is shown for constant operating conditions.


Author(s):  
Stephan Lellek ◽  
Thomas Sattelmayer

With the transition of the power production markets toward renewable energy sources, an increased demand for flexible, fossil-based power production systems arises. Steep load gradients and a high range of flexibility make gas turbines a core technology in this ongoing change. In order to further increase this flexibility research on power augmentation of premixed gas turbine combustors is conducted at the Lehrstuhl für Thermodynamik, TU München. Water injection in gas turbine combustors allows for the simultaneous control of NOx emissions as well as the increase of the power output of the engine and has therefore been transferred to a premixed combustor at lab scale. So far stable operation of the system has been obtained for water-to-fuel ratios up to 2.25 at constant adiabatic flame temperatures. This paper focuses on the effects of water injection on pollutant formation in premixed gas turbine flames. In order to guarantee for high practical relevance, experimental measurements are conducted at typical preheating temperatures and common gas turbine combustor residence times of about 20 ms. Spatially resolved and global species measurements are performed in an atmospheric single burner test rig for typical adiabatic flame temperatures between 1740 and 2086 K. Global measurements of NOx and CO emissions are shown for a wide range of equivalence ratios and variable water-to-fuel ratios. Cantera calculations are used to identify nonequilibrium processes in the measured data. To get a close insight into the emission formation processes in water-injected flames, local concentration measurements are used to calculate distributions of the reaction progress variable. Finally, to clarify the influence of spray quality on the composition of the exhaust gas, a variation of the water droplet diameters is done. For rising water content at constant adiabatic flame temperature, the NOx emissions can be held constant, whereas CO concentrations increase. On the contrary, both values decrease for measurements at constant equivalence ratio and reduced flame temperatures. Further analysis of the data shows the close dependency of CO concentration on the equivalence ratio; however, due to the water addition, a shift of the CO curves can be detected. In the local measurements, changes in the distribution of the reaction progress variable and an increase of the flame length were detected for water-injected flames along with changes of the maximum as well as the averaged CO values. Finally, a strong influence of water droplet size on NOx and CO formation is shown for constant operating conditions.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5695
Author(s):  
Felix B. Keil ◽  
Marvin Amzehnhoff ◽  
Umair Ahmed ◽  
Nilanjan Chakraborty ◽  
Markus Klein

Flame propagation statistics for turbulent, statistically planar premixed flames obtained from 3D Direct Numerical Simulations using both simple and detailed chemistry have been evaluated and compared to each other. To achieve this, a new database has been established encompassing five different conditions on the turbulent combustion regime diagram, using nearly identical numerical methods and the same initial and boundary conditions. The discussion includes interdependencies of displacement speed and its individual components as well as surface density function (i.e., magnitude of the reaction progress variable) with tangential strain rate and curvature. For the analysis of detailed chemistry Direct Numerical Simulation data, three different definitions of reaction progress variable, based on CH4,H2O and O2 mass fractions will be used. While the displacement speed statistics remain qualitatively and to a large extent quantitatively similar for simple chemistry and detailed chemistry, there are pronounced differences for its individual contributions which to a large extent depend on the definition of reaction progress variable as well as on the chosen isosurface level. It is concluded that, while detailed chemistry simulations provide more detailed information about the flame structure, the choice of the reaction progress variable definition and the choice of the resulting isosurface give rise to considerable uncertainty in the interpretation of displacement speed statistics, sometimes even showing opposing trends. Simple chemistry simulations are shown to provide (a) the global flame propagation statistics which are qualitatively similar to the corresponding results from detailed chemistry simulations, (b) remove the uncertainties with respect to the choice of reaction progress variable, and (c) are more straightforward to compare with theoretical analysis or model assumptions that are mostly based on simple chemistry assumptions.


2014 ◽  
Vol 694 ◽  
pp. 474-477
Author(s):  
Jing Luo ◽  
Lian Sheng Liu ◽  
Zi Zhong Chen

An experimental and simulation work had been conducted to study a one-dimensional partially premixed methane/air counterflow flame in this paper. Flame images are obtained through experiments and computations using GRIMech 3.00 chemistry were performed for the flames studied. The partially premixing effects upon the flame were revealed by comparing the flame structures and emissions with premixed flames at the same equivalence ratio. The results show the premixed flame only has a single flame structure. However, PPF has distinct double flame structures at present equivalence ratio. Temperature is relatively high in the whole combustion zone for premixed flame, while, for PPF, there are two temperature peaks in a rich premixed reaction zone on the fuel side and a nonpremixed reaction zone on the oxidizer side respectively. For PPF, NO concentration in the nonpremixed zone is much higher compared to that in the rich premixed zone because of higher OH concentration in the nonpremixed zone.


Author(s):  
Nilanjan Chakraborty ◽  
Alexander Herbert ◽  
Umair Ahmed ◽  
Hong G. Im ◽  
Markus Klein

AbstractA three-dimensional Direct Numerical Simulation (DNS) database of statistically planar $$H_{2} -$$ H 2 - air turbulent premixed flames with an equivalence ratio of 0.7 spanning a large range of Karlovitz number has been utilised to assess the performances of the extrapolation relations, which approximate the stretch rate and curvature dependences of density-weighted displacement speed $$S_{d}^{*}$$ S d ∗ . It has been found that the correlation between $$S_{d}^{*}$$ S d ∗ and curvature remains negative and a significantly non-linear interrelation between $$S_{d}^{*}$$ S d ∗ and stretch rate has been observed for all cases considered here. Thus, an extrapolation relation, which assumes a linear stretch rate dependence of density-weighted displacement speed has been found to be inadequate. However, an alternative extrapolation relation, which assumes a linear curvature dependence of $$S_{d}^{*}$$ S d ∗ but allows for a non-linear stretch rate dependence of $$S_{d}^{*}$$ S d ∗ , has been found to be more successful in capturing local behaviour of the density-weighted displacement speed. The extrapolation relations, which express $$S_{d}^{*}$$ S d ∗ as non-linear functions of either curvature or stretch rate, have been found to capture qualitatively the non-linear curvature and stretch rate dependences of $$S_{d}^{*}$$ S d ∗ more satisfactorily than the linear extrapolation relations. However, the improvement comes at the cost of additional tuning parameter. The Markstein lengths LM for all the extrapolation relations show dependence on the choice of reaction progress variable definition and for some extrapolation relations LM also varies with the value of reaction progress variable. The predictions of an extrapolation relation which involve solving a non-linear equation in terms of stretch rate have been found to be sensitive to the initial guess value, whereas a high order polynomial-based extrapolation relation may lead to overshoots and undershoots. Thus, a recently proposed extrapolation relation based on the analysis of simple chemistry DNS data, which explicitly accounts for the non-linear curvature dependence of the combined reaction and normal diffusion components of $$S_{d}^{*}$$ S d ∗ , has been shown to exhibit promising predictions of $$S_{d}^{*}$$ S d ∗ for all cases considered here.


Sign in / Sign up

Export Citation Format

Share Document