tangential strain
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 17)

H-INDEX

14
(FIVE YEARS 1)

Author(s):  
Sunny Kwok ◽  
Manqi Pan ◽  
Nicholas Hazen ◽  
Xueliang Pan ◽  
Jun Liu

Abstract Elevated intraocular pressure (IOP) may cause mechanical injuries to the optic nerve head (ONH) and the peripapillary tissues in glaucoma. Previous studies have reported the mechanical deformation of the ONH and the peripapillary sclera (PPS) at elevated IOP. The deformation of the peripapillary retina (PPR) has not been well-characterized. Here we applied high-frequency ultrasound elastography to map and quantify PPR deformation, and compared PPR, PPS and ONH deformation in the same eye. Whole globe inflation was performed in ten human donor eyes. High-frequency ultrasound scans of the posterior eye were acquired while IOP was raised from 5 to 30 mmHg. A correlation-based ultrasound speckle tracking algorithm was used to compute pressure-induced displacements within the scanned tissue cross-sections. Radial, tangential, and shear strains were calculated for the PPR, PPS, and ONH regions. In PPR, shear was significantly larger in magnitude than radial and tangential strains. Strain maps showed localized high shear and high tangential strains in PPR. In comparison to PPS and ONH, PPR had greater shear and a similar level of tangential strain. Surprisingly, PPR radial compression was minimal and significantly smaller than that in PPS. These results provide new insights into PPR deformation in response of IOP elevation, suggesting that shear rather than compression was likely the primary mode of IOP-induced mechanical insult in PPR. High shear, especially localized high shear, may contribute to the mechanical damage of this tissue in glaucoma.


Author(s):  
Shrey Trivedi ◽  
R. S. Cant

AbstractThe effects of varying turbulence intensity and turbulence length scale on premixed turbulent flame propagation are investigated using Direct Numerical Simulation (DNS). The DNS dataset contains the results of a set of turbulent flame simulations based on separate and systematic changes in either turbulence intensity or turbulence integral length scale while keeping all other parameters constant. All flames considered are in the thin reaction zones regime. Several aspects of flame behaviour are analysed and compared, either by varying the turbulence intensity at constant integral length scale, or by varying the integral length scale at constant turbulence intensity. The turbulent flame speed is found to increase with increasing turbulence intensity and also with increasing integral length scale. Changes in the turbulent flame speed are generally accounted for by changes in the flame surface area, but some deviation is observed at high values of turbulence intensity. The probability density functions (pdfs) of tangential strain rate and mean flame curvature are found to broaden with increasing turbulence intensity and also with decreasing integral length scale. The response of the correlation between tangential strain rate and mean flame curvature is also investigated. The statistics of displacement speed and its components are analysed, and the findings indicate that changes in response to decreasing integral length scale are broadly similar to those observed for increasing turbulence intensity, although there are some interesting differences. These findings serve to improve current understanding of the role of turbulence length scales in flame propagation.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhenyu Wang ◽  
Junsheng Yang ◽  
Xinghua Wang

Generally, the surrounding rock at the entrance of a mountain tunnel is loose, and the entrance has more slopes due to topography, which causes the tunnel entrance section to be easily destroyed under an earthquake. Based on the established slope model with a single free surface, this paper adopted the elastic wave theory to derive the analytical solution of the strain at the entrance of the mountain tunnel when the SH wave is incident perpendicularly to the bottom of the tunnel; besides, the factors affecting strain were also analyzed. The tangential strain curve at each point of the entrance section takes the centre of the elliptical tunnel as the centre of symmetry, forming symmetry between the left and right sides and mirror symmetry between the top and bottom sides. Then, large-scale shaking table model experiments were conducted to model the actual working conditions, and the correctness of the analytical solution was verified. The research can provide a theoretical reference for the seismic design of the entrance section of the high-speed railway tunnel and greatly improve the understanding of its seismic response.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5695
Author(s):  
Felix B. Keil ◽  
Marvin Amzehnhoff ◽  
Umair Ahmed ◽  
Nilanjan Chakraborty ◽  
Markus Klein

Flame propagation statistics for turbulent, statistically planar premixed flames obtained from 3D Direct Numerical Simulations using both simple and detailed chemistry have been evaluated and compared to each other. To achieve this, a new database has been established encompassing five different conditions on the turbulent combustion regime diagram, using nearly identical numerical methods and the same initial and boundary conditions. The discussion includes interdependencies of displacement speed and its individual components as well as surface density function (i.e., magnitude of the reaction progress variable) with tangential strain rate and curvature. For the analysis of detailed chemistry Direct Numerical Simulation data, three different definitions of reaction progress variable, based on CH4,H2O and O2 mass fractions will be used. While the displacement speed statistics remain qualitatively and to a large extent quantitatively similar for simple chemistry and detailed chemistry, there are pronounced differences for its individual contributions which to a large extent depend on the definition of reaction progress variable as well as on the chosen isosurface level. It is concluded that, while detailed chemistry simulations provide more detailed information about the flame structure, the choice of the reaction progress variable definition and the choice of the resulting isosurface give rise to considerable uncertainty in the interpretation of displacement speed statistics, sometimes even showing opposing trends. Simple chemistry simulations are shown to provide (a) the global flame propagation statistics which are qualitatively similar to the corresponding results from detailed chemistry simulations, (b) remove the uncertainties with respect to the choice of reaction progress variable, and (c) are more straightforward to compare with theoretical analysis or model assumptions that are mostly based on simple chemistry assumptions.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5548
Author(s):  
Felix Benjamin Keil ◽  
Marvin Amzehnhoff ◽  
Umair Ahmed ◽  
Nilanjan Chakraborty ◽  
Markus Klein

In the present study, flame propagation statistics from turbulent statistically planar premixed flames obtained from simple and detailed chemistry, three-dimensional Direct Numerical Simulations, were evaluated and compared to each other. To this end, a new database was established encompassing five different conditions on the turbulent premixed combustion regime diagram, using nearly identical numerical methods and the same initial and boundary conditions. A detailed discussion of the advantages and limitations of both approaches is provided, including the difference in carbon footprint for establishing the database. It is shown that displacement speed statistics and their interrelation with curvature and tangential strain rate are in very good qualitative and reasonably good quantitative agreement between simple and detailed chemistry Direct Numerical Simulations. Hence, it is concluded that simple chemistry simulations should retain their importance for future combustion research, and the environmental impact of high-performance computing methods should be carefully chosen in relation to the goals to be achieved.


2021 ◽  
Author(s):  
Meysam Sahafzadeh ◽  
Larry W. Kostiuk ◽  
Seth B. Dworkin

Laminar flamelets are often used to model premixed turbulent combustion. The libraries of rates of conversion from chemical to thermal enthalpies used for flamelets are typically based on counter-flow, stained laminar planar flames under steady conditions. The current research seeks further understanding of the effect of stretch on premixed flames by considering laminar flame dynamics in a cylindrically-symmetric outward radial flow geometry (i.e., inwardly propagating flame). This numerical model was designed to study the flame response when the flow and scalar fields align (i.e., no tangential strain on the flame) while the flame either expands (positive stretch) or contracts (negative stretch, which is a case that has been seldom explored) radially. The transient response of a laminar premixed flame has been investigated by applying a sinusoidal variation of mass flow rate at the inlet boundary with different frequencies to compare key characteristics of a steady unstretched flame to the dynamics of an unsteady stretched flame. An energy index (EI), which is the integration of the source term in the energy equation over all control volumes in the computational domain, was selected for the comparison. The transient response of laminar premixed flames, when subjected to positive and negative stretch, results in amplitude decrease and phase shift increase with increasing frequency. Other characteristics, such as the deviation of the EI at the mean mass flow rate between when the flame is expanding and contracting, are nonmonotonic with frequency. Also, the response of fuel lean flames is more sensitive to the frequency of the periodic stretching compared to a stoichiometric flame. An analysis to seek universality of transient flame responses across lean methane-air flames of different equivalence ratios (i.e., 1.0 to 0.7) using Damköhler Numbers (i.e., the ratio of a flow to chemical time scales) had limited success.


2021 ◽  
Author(s):  
Meysam Sahafzadeh ◽  
Larry W. Kostiuk ◽  
Seth B. Dworkin

Laminar flamelets are often used to model premixed turbulent combustion. The libraries of rates of conversion from chemical to thermal enthalpies used for flamelets are typically based on counter-flow, stained laminar planar flames under steady conditions. The current research seeks further understanding of the effect of stretch on premixed flames by considering laminar flame dynamics in a cylindrically-symmetric outward radial flow geometry (i.e., inwardly propagating flame). This numerical model was designed to study the flame response when the flow and scalar fields align (i.e., no tangential strain on the flame) while the flame either expands (positive stretch) or contracts (negative stretch, which is a case that has been seldom explored) radially. The transient response of a laminar premixed flame has been investigated by applying a sinusoidal variation of mass flow rate at the inlet boundary with different frequencies to compare key characteristics of a steady unstretched flame to the dynamics of an unsteady stretched flame. An energy index (EI), which is the integration of the source term in the energy equation over all control volumes in the computational domain, was selected for the comparison. The transient response of laminar premixed flames, when subjected to positive and negative stretch, results in amplitude decrease and phase shift increase with increasing frequency. Other characteristics, such as the deviation of the EI at the mean mass flow rate between when the flame is expanding and contracting, are nonmonotonic with frequency. Also, the response of fuel lean flames is more sensitive to the frequency of the periodic stretching compared to a stoichiometric flame. An analysis to seek universality of transient flame responses across lean methane-air flames of different equivalence ratios (i.e., 1.0 to 0.7) using Damköhler Numbers (i.e., the ratio of a flow to chemical time scales) had limited success.


2021 ◽  
Vol 11 (4) ◽  
pp. 1652
Author(s):  
Xin Pan ◽  
Jiuzhou Huang ◽  
Zhiqiang Gan ◽  
Shiming Dong ◽  
Wen Hua

The crack-propagation form may appear as an arbitrary mixed-mode fracture in an engineering structure due to an irregular internal crack. It is of great significance to research the mixed-mode fracture of materials with cracks. The coupling effect of multiple variables (crack height ratio, horizontal deflection angle and vertical deflection angle) on fracture parameters such as the stress intensity factors and the T-stress are the key points in this paper. A three-point bending specimen with an inclined crack was proposed and used to conduct mixed-mode fracture research. The fracture parameters were obtained by finite element analysis, and the computed results showed that the pure mode I fracture and mixed-mode fractures (mode I/II, mode I/III and mode I/II/III) can be realized by changing the deflection angles of the crack. The pure mode I and the mixed-mode fracture toughness of sandstone were obtained by a series of mixed-mode fracture experiments. The experimental results were analyzed with the generalized maximum tangential strain energy density factor criterion considering T-stress. The results showed that the non-singular term T-stress in the fracture parameters cannot be ignored in any mixed-mode fracture research, and the generalized maximum tangential strain energy density factor criterion considering T-stress can better predict the mixed-mode fracture toughness than other criteria.


2021 ◽  
Author(s):  
Fan Lv ◽  
Bolong Huang ◽  
Jianrui Feng ◽  
Weiyu Zhang ◽  
Kai Wang ◽  
...  

Abstract The multi-metallene with an ultrahigh surface area has a great potential in precise tuning of surface heterogeneous d-electronic correlation by surface strain effect for the distinctive surface electronic structure, which is a brand new class of promising 2D electrocatalyst for sustainable energy device application. However, achieving such atomically thin multi-metallene still confronts a grand challenge. Herein, we present a new synthetic method for an atomic-level palladium-iridium (PdIr) bimetallene with an average thickness of only ∼1.0 nm for achieving superior catalysis for hydrogen evolution reaction (HER) and formic acid oxidation reaction (FAOR). The curved PdIr bimetallene presents a top-ranked high electrochemical active area of 127.5 ± 10.8 m2 gPd+Ir−1 in the reported noble alloy materials, and exhibits a very low overpotential, ultrahigh activity and improved stability for HER and FAOR. DFT calculation reveals the PdIr bimetallene herein has the unique lattice tangential strain, which can induce the surface distortion with concurrently creating a variety of concave-convex featured micro-active-region formed by variously coordinated Pd-sites-agglomeration. Such strong strain effect correlates the abnormal on-site active 4d10-t2g-orbital Coulomb correlation potential and directly elevates orbital-electronegativity exposing within these active regions, resulting in preeminent barrier-free energetic path for significant enhancement of FAOR and HER catalytic performance.


Sign in / Sign up

Export Citation Format

Share Document