F212 Turbulent Heat Transfer Characteristics of a Flow over a Two-Dimensional Hill

2007 ◽  
Vol 2007 (0) ◽  
pp. 363-364
Author(s):  
Tomoya Houra ◽  
Yoshihiro Ando ◽  
Masato Tagawa ◽  
Yasutaka Nagano
2013 ◽  
Vol 49 (4) ◽  
pp. 469-484 ◽  
Author(s):  
M. Bousbai ◽  
M. Ould-Rouiss ◽  
A. Mazouz ◽  
A. Mataoui

Author(s):  
Toru Nakatsuka ◽  
Kazuyuki Takase ◽  
Hiroyuki Yoshida ◽  
Takeharu Misawa

As one of next generation nuclear reactors, development of a supercritical pressure water reactor (SCWR) has been performed. In order to design the SCWR, it is necessary to investigate thermal-hydraulic characteristics in the SCWR core precisely. As for those characteristics, many experimental studies have been conducted from the former in each country using circular tubes, annular channels, and the simulated fuel bundles. An objective of this study is to clarify the prediction accuracy of the turbulent heat transfer characteristics in the supercritical pressure fluids for the SCWR design. From the experimental results of the supercritical pressure fluids flowing upward in a vertical circular tube, it was confirmed that the turbulent heat transfer coefficient suddenly decreases under the high heat flux condition. Although many numerical studies have been done in order to confirm the deterioration of turbulent heat transfer in supercritical pressure fluids, it is important to choose a suitable turbulence model to obtain high prediction accuracy. Then, the present study was performed to investigate numerically the effect of turbulent models on the deteriorated turbulent heat transfer.


Sign in / Sign up

Export Citation Format

Share Document