particle size and shape
Recently Published Documents


TOTAL DOCUMENTS

358
(FIVE YEARS 74)

H-INDEX

40
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Charles Nelson Helms ◽  
Stephen Joseph Munchak ◽  
Ali Tokay ◽  
Claire Pettersen

Abstract. Measurements of snowflake particle size and shape are important for studying the snow microphysics. While a number of instruments exist that are designed to measure these important parameters, this study focuses on the measurement techniques of three digital video disdrometers: the Precipitation Imaging Package (PIP), the Multi-Angle Snowflake Camera (MASC) and the Two-Dimensional Video Disdrometer (2DVD). To gain a better understanding of the relative strengths and weaknesses of these instruments and to provide a foundation upon which comparisons can be made between studies using data from different instruments, we perform a comparative analysis of the measurement algorithms employed by each of the three instruments by applying the algorithms to snowflake images captured by PIP during the ICEP-POP 2018 field campaign. Our analysis primarily focuses on the measurements of area, equivalent diameter, and aspect ratio. Our findings indicate that area and equi-area diameter measurements using the 2DVD camera setup should be the most accurate, followed by MASC, which is slightly more accurate than PIP. In terms of the precision of the area and equi-area diameter measurements, however, MASC is considerably more precise than PIP or 2DVD, which provide similar precision once the effects of the PIP image compression algorithm are taken into account. Both PIP and MASC use shape-fitting algorithms to measure aspect ratio. While our analysis of the MASC aspect ratio suggests the measurements are reliable, our findings indicate that both the ellipse and rectangle aspect ratios produced by PIP under-performed considerably due to the shortcomings of the PIP shape-fitting techniques. That said, we also demonstrate that reliable measurements of aspect ratio can be retrieved from PIP by reprocessing the PIP images using either the MASC shape-fitting technique or a tensor-based ellipse-fitting technique. Because of differences in instrument design, 2DVD produces measurements of particle horizontal and vertical extent rather than length and width. Furthermore, the 2DVD measurements of particle horizontal extent can be contaminated by horizontal particle motion. Our findings indicate that, although the correction technique used to remove the horizontal motion contamination performs remarkably well with snowflakes despite being designed for use with rain drops, the 2DVD measurements of particle horizontal extent are potentially unreliable.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 24
Author(s):  
Renata Biba ◽  
Karla Košpić ◽  
Bruno Komazec ◽  
Dora Markulin ◽  
Petra Cvjetko ◽  
...  

Silver nanoparticles (AgNPs) have been implemented in a wide range of commercial products, resulting in their unregulated release into aquatic as well as terrestrial systems. This raises concerns over their impending environmental effects. Once released into the environment, they are prone to various transformation processes that modify their reactivity. In order to increase AgNP stability, different stabilizing coatings are applied during their synthesis. However, coating agents determine particle size and shape and influence their solubility, reactivity, and overall stability as well as their behavior and transformations in the biological medium. In this review, we attempt to give an overview on how the employment of different stabilizing coatings can modulate AgNP-induced phytotoxicity with respect to growth, physiology, and gene and protein expression in terrestrial and aquatic plants and freshwater algae.


2021 ◽  
Vol 5 (4) ◽  
pp. 88
Author(s):  
Thamonwan Tattanon ◽  
Premjit Arpornmaeklong ◽  
Sarute Ummartyotin ◽  
Thirawudh Pongprayoon

The motivation of this research work is to develop novel medical material from cuttlebone (calcium source) by L-rhamnose monohydrate (biosurfactant) for aged people. The process can be synthesized biphasic calcium phosphate which is eco-friendly to environment. One of the most important aspects for this work is to use cuttlebone as a naturally occurring calcium source from a local beach in Thailand. It usually contains 90% calcium carbonate. The objective of this research work is to synthesize the biphasic calcium phosphate by hydrothermal reaction. Critical micelle concentrations (CMCs) of 10, 20, 100, 500 and 1000 of L-rhamnose monohydrate were used to control particle size and shape. XRD revealed a mixture of β-tricalcium phosphate and hydroxyapatite powder. SEM reported that the size of particles can be effectively controlled by the addition of L-rhamnose monohydrate, and with the addition of surfactant, size uniformity was achieved. The cytotoxicity test was reported to be in the range of 70–75%. It was remarkable to note that biphasic calcium phosphate synthesized from cuttlebone with the aid of L-rhamnose monohydrate will be considered an excellent candidate as a scaffold material.


2021 ◽  
Author(s):  
Xiao-Chun Zhao ◽  
Cheng Li ◽  
Jun-Xing Zheng ◽  
Xin-Min Gao ◽  
Ya-Gang Zhang ◽  
...  

Géotechnique ◽  
2021 ◽  
pp. 1-40
Author(s):  
Linzhu Li ◽  
Quan Sun ◽  
Magued Iskander

Two-dimensional Dynamic Image Analysis (DIA) is gaining acceptance in geotechnical engineering research. Three-dimensional (3D) DIA extracts features from 8-12 projections of a particles thus it is believed to verge on the true particle morphology. DIA is fast, efficient, and convenient for characterizing thousands of particles quickly; nevertheless, it captures shapes that are fundamentally different than the 3D morphologies reconstructed using micro-computed tomography (μCT).  In DIA particle features are interpreted using external images of a particle, which fail to account for differences in imaging perspectives. In addition, 2D and 3D shape descriptors are influenced by differences in dimensionality projection owing to variations in definition, dimensionality, and perspectives of the particle images employed which causes them to differ from their 3D counterparts.  In this study we compared sand particle size and shape descriptors obtained using both DIA and μCT for three natural sands having wide granulometries. 3D DIA offers significant advantages in terms of efficiency, while providing adequate representation of Feret dimensions, Sphericity and Convexity.  However, the study demonstrates that 3D Roundness is difficult to characterize using DIA and that shape measurements of complex irregular calcareous sands obtained from 3D DIA are not comparable to those obtained using μCT.


Algorithms ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 340
Author(s):  
Tom Burr ◽  
Ian Schwerdt ◽  
Kari Sentz ◽  
Luther McDonald ◽  
Marianne Wilkerson

A major goal in pre-detonation nuclear forensics is to infer the processing conditions and/or facility type that produced radiological material. This review paper focuses on analyses of particle size, shape, texture (“morphology”) signatures that could provide information on the provenance of interdicted materials. For example, uranium ore concentrates (UOC or yellowcake) include ammonium diuranate (ADU), ammonium uranyl carbonate (AUC), sodium diuranate (SDU), magnesium diuranate (MDU), and others, each prepared using different salts to precipitate U from solution. Once precipitated, UOCs are often dried and calcined to remove adsorbed water. The products can be allowed to react further, forming uranium oxides UO3, U3O8, or UO2 powders, whose surface morphology can be indicative of precipitation and/or calcination conditions used in their production. This review paper describes statistical issues and approaches in using quantitative analyses of measurements such as particle size and shape to infer production conditions. Statistical topics include multivariate T tests (Hotelling’s ), design of experiments, and several machine learning (ML) options including decision trees, learning vector quantization neural networks, mixture discriminant analysis, and approximate Bayesian computation (ABC). ABC is emphasized as an attractive option to include the effects of model uncertainty in the selected and fitted forward model used for inferring processing conditions.


2021 ◽  
Vol 54 (6) ◽  
Author(s):  
Fangzuo Li ◽  
Qianqian Xu ◽  
Wenjing Xia ◽  
Xiang Zhang ◽  
Weidong Zhao ◽  
...  

The X-ray irradiation of gold salt aqueous solutions in the synthesis of gold nanoparticles (AuNPs) in the absence of any reducing agent or stabilizer is presented. The size, dispersion, number of particles, yield and morphology evolution during the radiolytic formation of AuNPs were followed simultaneously using in situ small-angle X-ray scattering. This study provides an insight into the overall kinetics and formation mechanisms at the initial stage of AuNP synthesis without reductants and stabilizers. The pH-dependent speciation of aqueous HAuCl4 and its influence on the synthesis, structure and properties of AuNPs were observed. The result sheds light on the key parameters required to obtain stable monomodal particles and the influence of the surface charge and reactivity of the chemical solution on the final particle size and shape.


Sign in / Sign up

Export Citation Format

Share Document