G125 Visualization of enhanced oil recovery by X-ray CT of two-phase flow in porous media

2012 ◽  
Vol 2012 (0) ◽  
pp. 213-214
Author(s):  
Yudai Suzuki ◽  
Suguru Uemura ◽  
Shohji Tsushima ◽  
Shuichiro Hirai
Open Physics ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 12-17 ◽  
Author(s):  
Haojun Xie ◽  
Aifen Li ◽  
Zhaoqin Huang ◽  
Bo Gao ◽  
Ruigang Peng

AbstractCaves in fractured-vuggy reservoir usually contain lots of filling medium, so the two-phase flow in formations is the coupling of free flow and porous flow, and that usually leads to low oil recovery. Considering geological interpretation results, the physical filled cave models with different filling mediums are designed. Through physical experiment, the displacement mechanism between un-filled areas and the filling medium was studied. Based on the experiment model, we built a mathematical model of laminar two-phase coupling flow considering wettability of the porous media. The free fluid region was modeled using the Navier-Stokes and Cahn-Hilliard equations, and the two-phase flow in porous media used Darcy's theory. Extended BJS conditions were also applied at the coupling interface. The numerical simulation matched the experiment very well, so this numerical model can be used for two-phase flow in fracture-vuggy reservoir. In the simulations, fluid flow between inlet and outlet is free flow, so the pressure difference was relatively low compared with capillary pressure. In the process of water injection, the capillary resistance on the surface of oil-wet filling medium may hinder the oil-water gravity differentiation, leading to no fluid exchange on coupling interface and remaining oil in the filling medium. But for the water-wet filling medium, capillary force on the surface will coordinate with gravity. So it will lead to water imbibition and fluid exchange on the interface, high oil recovery will finally be reached at last.


Author(s):  
Andreas G. Yiotis ◽  
John Psihogios ◽  
Michael E. Kainourgiakis ◽  
Aggelos Papaioannou ◽  
Athanassios K. Stubos

1996 ◽  
Vol 464 ◽  
Author(s):  
E. H. Kawamoto ◽  
Po-Zen Wong

ABSTRACTWe have carried out x-ray radiography and computed tomography (CT) to study two-phase flow in 3-D porous media. Air-brine displacement was imaged for drainage and imbibition experiments in a vertical column of glass beads. By correlating water saturation Sw with resistance R, we find that there is a threshold saturation S* ≈ 0.2, above which R(SW) ∼ Sw−2, in agreement with the empirical Archie relation. This holds true for both drainage and imbibition with littlehysteresis, provided that Sw remains above S*. Should Sw drop below S* during drainage, R(Sw) rises above the Archie prediction, exhibiting strong hysteresis upon reimbibition. This behavior suggests a transition in the connectivity of the water phase near S*, possibly due to percolation effects.


1995 ◽  
Vol 19 (3) ◽  
pp. 261-280 ◽  
Author(s):  
Alaa Abdin ◽  
Jagath J. Kaluarachchi ◽  
Ching-Min Chang ◽  
Marian W. Kemblowski

2017 ◽  
Vol 53 (1) ◽  
pp. 199-221 ◽  
Author(s):  
Abdullah Cihan ◽  
Jens Birkholzer ◽  
Luca Trevisan ◽  
Ana Gonzalez-Nicolas ◽  
Tissa Illangasekare

Sign in / Sign up

Export Citation Format

Share Document