viscous coupling
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 7)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Adina E. Pusok ◽  
Dave R. Stegman ◽  
Madeleine Kerr

Abstract. Subduction zones represent the only major pathway by which continental material can be returned to the Earth's mantle. Constraining the sediments mass flux through subduction zones is important to the understanding of both petrogenesis of continental crust, and the recycling of volatiles and continental material back into the mantle over long periods of geologic time. When sediments are considered, convergent margins appear to fall into one of two classes: accretionary and erosive. Accretionary margins are dominated by accretion of thick piles of sediments (> 1 km) from the subducting plate, while tectonic erosion is favored in regions where the sedimentary cover is < 1 km. However, as data help define geometry of the global subduction system, the consequences of the two styles of margins on subduction dynamics remain poorly resolved. In this study, we run systematic 2-D numerical simulations of subduction to investigate how sediment fluxes influence subduction dynamics and plate coupling. We vary the thickness and viscosity of the sediment layer entering subduction, the thickness of the upper plate, and the driving velocity of the subducting plate (i.e., kinematic boundary conditions). Our results show three modes of subduction interface: a) Tectonic erosion margin (high viscosity sediment layer), b) Low angle accretionary wedge margin (low viscosity, thin sediment layer), and c) High angle accretionary wedge margin (low viscosity, thick sediment layer). We find that the properties of the sediment layer modulate the extent of viscous coupling at the interface between the subducting and overriding plates. When the viscous coupling is increased, an erosive style margin will be favored over an accretionary style. On the other hand, when the viscous coupling is reduced, sediments are scrapped-off the subducting slab to form an accretionary wedge. Diagnostic parameters are extracted automatically from numerical simulations to analyze the dynamics and differentiate between these modes of subduction margin. Models of tectonic erosion margins show small radii of curvature, slow convergence rates and thin subduction interfaces, while results of accretionary margins show large radii of curvature, faster convergence rates and dynamic accretionary wedges. These diagnostics parameters are then linked with observations of present-day subduction zones.


2021 ◽  
Vol 11 (3) ◽  
pp. 1110
Author(s):  
Liqiang Jin ◽  
Xianglong Peng ◽  
Dehai Wang ◽  
Desheng Guo ◽  
Biao Chen

During operation, the shear friction between the silicone oil and the plates of a viscous coupling (VC) will generate heat and increase the temperature of the silicone oil, inflate the volume, increase the internal pressure, and eventually deliver more torque, in what is called hump operation mode. Temperature is the root cause of the change of the operation characteristics in VCs. In this paper, the heat-transfer model for a VC is established based on the thermodynamical theory. The capacity of the heat transmission of each part of the VC are calculated to obtain the temperature of silicone oil. The real-time shear torque of the VC is finally obtained. Then, the theoretical analysis on hump phenomenon was done. The internal pressure was obtained by analyzing the characteristics of ideal gas, and the maximum torque during the hump phenomenon was calculated. The simulation of the key parameters and the entire working process for the VC were carried out based on the proposed calculation model. A prototype of a viscous limited-slip differential (VLSD) was developed to test the output torque characteristics. The test results were quite consistent with the simulation results, and the accuracy of the calculation model was verified.


2020 ◽  
Vol 208 ◽  
pp. 103259 ◽  
Author(s):  
P. Agard ◽  
C. Prigent ◽  
M. Soret ◽  
B. Dubacq ◽  
S. Guillot ◽  
...  
Keyword(s):  

2019 ◽  
Vol 145 (9) ◽  
pp. 04019060 ◽  
Author(s):  
Han Yang ◽  
Hexiang Wang ◽  
Yuan Feng ◽  
Fangbo Wang ◽  
Boris Jeremić

2019 ◽  
Vol 2 (7 (98)) ◽  
pp. 6-12 ◽  
Author(s):  
Oleksij Fomin ◽  
Alyona Lovska ◽  
Ivan Kulbovskyi ◽  
Halyna Holub ◽  
Ihor Kozarchuk ◽  
...  

SPE Journal ◽  
2018 ◽  
Vol 24 (01) ◽  
pp. 158-177 ◽  
Author(s):  
Pål Østebø Andersen ◽  
Yangyang Qiao ◽  
Dag Chun Standnes ◽  
Steinar Evje

Summary This paper presents a numerical study of water displacing oil using combined cocurrent/countercurrent spontaneous imbibition (SI) of water displacing oil from a water-wet matrix block exposed to water on one side and oil on the other. Countercurrent flows can induce a stronger viscous coupling than during cocurrent flows, leading to deceleration of the phases. Even as water displaces oil cocurrently, the saturation gradient in the block induces countercurrent capillary diffusion. The extent of countercurrent flow may dominate the domain of the matrix block near the water-exposed surfaces while cocurrent imbibition may dominate the domain near the oil-exposed surfaces, implying that one unique effective relative permeability curve for each phase does not adequately represent the system. Because relative permeabilities are routinely measured cocurrently, it is an open question whether the imbibition rates in the reservoir (depending on a variety of flow regimes and parameters) will in fact be correctly predicted. We present a generalized model of two-phase flow dependent on momentum equations from mixture theory that can account dynamically for viscous coupling between the phases and the porous media because of fluid/rock interaction (friction) and fluid/fluid interaction (drag). These momentum equations effectively replace and generalize Darcy's law. The model is parameterized using experimental data from the literature. We consider a water-wet matrix block in one dimension that is exposed to oil on one side and water on the other side. This setup favors cocurrent SI. We also account for the fact that oil produced countercurrently into water must overcome the so-called capillary backpressure, which represents a resistance for oil to be produced as droplets. This parameter can thus influence the extent of countercurrent production and hence viscous coupling. This complex mixture of flow regimes implies that it is not straightforward to model the system by a single set of relative permeabilities, but rather relies on a generalized momentum-equation model that couples the two phases. In particular, directly applying cocurrently measured relative permeability curves gives significantly different predictions than the generalized model. It is seen that at high water/oil-mobility ratios, viscous coupling can lower the imbibition rate and shift the production from less countercurrent to more cocurrent compared with conventional modeling. Although the viscous-coupling effects are triggered by countercurrent flow, reducing or eliminating countercurrent production by means of the capillary backpressure does not eliminate the effects of viscous coupling that take place inside the core, which effectively lower the mobility of the system. It was further seen that viscous coupling can increase the remaining oil saturation in standard cocurrent-imbibition setups.


Sign in / Sign up

Export Citation Format

Share Document