302 The factors of three-dimensional laminar boundary layer affecting the characteristics of cross-flow instability

2001 ◽  
Vol 2001 (0) ◽  
pp. 69-70
Author(s):  
Hideo TANIGUCHI ◽  
Takashi WATANABE ◽  
Keiichi KATO
2019 ◽  
Vol 486 (6) ◽  
pp. 668-672
Author(s):  
S. A. Baranov ◽  
A. Ph. Kiselev ◽  
I. A. Moralev ◽  
D. S. Sboev ◽  
S. N. Tolkachev ◽  
...  

The results of an experimental study of the effect of dielectric barrier discharge (DBR) actuator on laminar-turbulent transition in a three-dimensional boundary layer under influence of elevated free-stream turbulence are presented. The travelling cross-flow instability modes are dominated in transition in a base configuration. Their characteristics do not depend on a spanwise position. The DBD-actuator that generated stationary cross-flow vortices with the predefined spanwise wavelength when turned on was capable to reduce a turbulent spots production rate in comparison to the base regime.


2019 ◽  
Vol 64 (9) ◽  
pp. 365-369
Author(s):  
S. A. Baranov ◽  
M. D. Gamirullin ◽  
A. Ph. Kiselev ◽  
A. P. Kuryachii ◽  
D. S. Sboev ◽  
...  

2019 ◽  
Vol 488 (2) ◽  
pp. 147-152
Author(s):  
S. A. Baranov ◽  
M. D. Gamirullin ◽  
A. Ph. Kiselev ◽  
A. P. Kuryachii ◽  
D. S. Sboev ◽  
...  

Results of experiments in low-turbulence subsonic wind tunnel sustaining the possibility of significant attenuation of the cross-flow velocity and the intensity of stationary instability vortices due to the body force impact on three-dimensional boundary layer are presented. The unidirectional body force over a significant area of the streamlined surface has been created with the help of dielectric barrier discharge actuator.


1985 ◽  
Vol 150 ◽  
pp. 329-356 ◽  
Author(s):  
D. I. A. Poll

An experiment has been performed to determine the effect of yaw upon transition in the boundary layer formed on the windward face of a long cylinder. The china-clay-evaporation and surface-oil-flow techniques have been used to study the development of the fixed-wavelength stationary disturbances which are characteristic of cross-flow instability. It has been found that the boundary layer is also susceptible to time-dependent disturbances which grow to very large amplitudes prior to the onset of transition. These disturbances have been studied with a hot-wire anemometer. The conditions necessary for the onset and completion of transition have been determined by the use of surface Pitot tubes. Data from the experiment have been compared with the simple criteria for instability and transition which were proposed by Owen & Randall over thirty years ago. In general it has been found that these criteria are inadequate, and, where possible, improvements have been proposed. The raw data are presented in sufficient detail for them to be used to test, or calibrate, future theoretical models of the transition process in three-dimensional boundary-layer flows.


2018 ◽  
Vol 856 ◽  
pp. 822-849 ◽  
Author(s):  
Thomas Corke ◽  
Alexander Arndt ◽  
Eric Matlis ◽  
Michael Semper

Experiments were performed to investigate passive discrete roughness for transition control on a sharp right-circular cone at an angle of attack at Mach 6.0. A cone angle of attack of $6^{\circ }$ was set to produce a mean cross-flow velocity component in the boundary layer over the cone by which the cross-flow instability was the dominant mechanism of turbulent transition. The approach to transition control is based on exciting less-amplified (subcritical) stationary cross-flow modes through the addition of discrete roughness that suppresses the growth of the more-amplified (critical) cross-flow modes, and thereby delays transition. The passive roughness consisted of indentations (dimples) that were evenly spaced around the cone at an axial location that was just upstream of the first linear stability neutral growth branch for cross-flow modes. The experiments were performed in the air force academy (AFA) Mach 6.0 Ludwieg Tube Facility. The cone model was equipped with a motorized three-dimensional traversing mechanism that mounted on the support sting. The traversing mechanism held a closely spaced pair of fast-response total pressure Pitot probes. The measurements consisted of surface oil flow visualization and off-wall azimuthal profiles of mean and fluctuating total pressure at different axial locations. These documented an 25 % increase in the transition Reynolds number with the subcritical roughness. In addition, the experiments revealed evidence of a nonlinear, sum and difference interaction between stationary and travelling cross-flow modes that might indicate a mechanism of early transition in conventional (noisy) hypersonic wind tunnels.


Sign in / Sign up

Export Citation Format

Share Document