3204 Development of active vibration control for high-speed elevators by operational modal analysis

2006 ◽  
Vol 2006.15 (0) ◽  
pp. 187-190
Author(s):  
Naoaki NOGUCHI ◽  
Atsushi ARAKAWA ◽  
Kouichi MIYATA ◽  
Hironori FUKATA
2014 ◽  
Vol 598 ◽  
pp. 529-533
Author(s):  
Erdi Gülbahçe ◽  
Mehmet Çelik ◽  
Mustafa Tinkir

The main purpose of this study is to prepare mathematical model for active vibration control of a structure. This paper presents the numerical and experimental modal analysis of aluminum cantilever beam in order to investigate the dynamic characteristics of the structure. The results will be used for active vibration control of structure’s experimental setup. Experimental natural frequencies are obtained and compared to verify the proposed numerical model by using modal analysis results. MATLAB System Identification Toolbox and ANSYS harmonic response function are used together to estimate beam’s equations of motion which include its amplitude, frequency and phase angle values. Moreover, the mathematical model of beam is simulated in MATLAB/Simulink software to determine the dynamic behavior of the proposed system. Furthermore, another prediction model approach with multiple input and single output is used to find the realistic behavior of beam via an adaptive neural-network-based fuzzy logic inference system, in addition, impulse responses of the proposed models are compared and the control block diagram for active vibration control is implemented. As a first iteration, PID type controller is designed to suppress vibrations against the disturbance input. The results of modal analysis, the prediction models, controlled and uncontrolled system responses are presented in graphics and tables for obtaining a sample numerical active vibration control.


2019 ◽  
Vol 24 (3) ◽  
pp. 608-615 ◽  
Author(s):  
Miroslav Pawlenka ◽  
Miroslav Mahdal ◽  
Jiri Tuma ◽  
Adam Burecek

This study concerns the active vibration control of journal bearings, which are also known as sliding bearings. The control system contains a non-rotating loose bushing, the position of which is controlled by piezoelectric actuators. For governing the respective orthogonal direction of the journal motion, the control algorithm realizes a proportional controller in parallel with a bandpass filter of the IIR type. The bandpass filter is of the second order and its centre frequency is self-tuned to be the same as the whirl frequency that results from the instability of the bearing journal due to the oil film. The objective of active vibration control is to achieve the highest operational speed of the journal bearing at which the motion of the rotor is stable. The control algorithm for the active vibration control is implemented in Simulink and realized in a dSPACE control system.


2002 ◽  
Vol 2002.77 (0) ◽  
pp. _12-23_-_12-24_
Author(s):  
Takenori KUBO ◽  
Hiroshi MATSUHISA ◽  
Kenji UTSUNOMIYA

2013 ◽  
Vol 196 ◽  
pp. 62-73 ◽  
Author(s):  
Piotr Kohut

In the paper an application of vision methods and algorithms in various domains that contribute to mechatronics is presented. Regarding mechatronics devices and machines as robots, a vision system employed for a testing station simulating an industrial assembly line is discussed. Some numerical aspects concerning image pre-processing, analysis and geometrical transformations commonly used in robotics were introduced. To accomplish an effective investigation, the developed methodology and algorithms were implemented and verified on an experimental setup composed of two industrial robots and automation devices cooperating with two various vision systems. In the case of underwater robots for tank inspection, image pre-processing and analysis algorithms for the robot's position estimation, an image scale calculation and wall crack detection were investigated. An active vibration control system is treated as a mechatronic device which contains mechanical parts, electronics and software. In this example, a visual servoing architecture based on image features for controlling an active vibration control system was examined. For an effective investigation and synthesis of visual servoing algorithms, a MATLAB/Simulink/dSPACE hardware–software environment was employed. A vision system was used to analyze vibration amplitude of the vibro-isolation mass of the active suspension system and to provide a feedback control signal. The connection of 3D vision techniques with modal analysis was shown. Within the confines of the project a methodology for amplitude of vibration measurement and a software tool for modal analysis realization based on visual data were developed. The 3D measurements and structure of the construction were obtained by application and development of passive 3-D vision techniques. From this area, ‘structure from motion’ techniques were developed. In the experimental research, a mechatronic test stand was designed and manufactured enabling automatic two-axis control of a camera. A frame structure was built, in which a guiding-rail system was mounted enabling straight-line motion of a camera. Additionally, a system realizing rotational motion of a camera was built in. To control the experiment stand, software was created enabling the combination of the hardware-software part of the stand with the software part of a vision system. A tool was developed for the purpose of modal analysis and estimation of the quantities characterizing dynamic properties of the structure based on vision signals. As a conclusion, the presented, implemented and tested vision methods in various hardware-software programming platforms are discussed


2016 ◽  
Vol 829 ◽  
pp. 137-143 ◽  
Author(s):  
Yong Sheng Wu ◽  
Wei Zhong Zhang ◽  
Xiu Yun Meng

A cable-net reflector is fist introduced and then the state space representation is derived based on the finite element model. Modal analysis is carried out for the purpose of vibration control in modal space. The first several natural frequencies and vibration modes are obtained to analyze the vibration characteristics. The optimal control theory based on LQR with full state feedback is used for the control problem. Numerical simulations of the impulse disturbance response and the frequency response are implemented. Also, the contrast between the uncontrolled and controlled cases is illustrated. The theoretical results confirm the effectiveness of the proposed active control strategy for the vibration suppress of the cable-net reflector.


Sign in / Sign up

Export Citation Format

Share Document